Quantitative Software Engineering Series

Lawrence Bernstein, Series Editor

".. Tt T i Y -y

| DELLss B0 2000008

SOFTWARE
TESTING

Concepts and Operations

Ali Mili « Fairouz Tchier

WILEY

Software Testing

Concepts and Operations

Ali Mili
NJIT, USA

Fairouz Tchier
KSU, KSA

WILEY

Copyright © 2015 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.
com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic formats. For more information about Wiley products,

visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data

Mili, Ali.
Software testing : concepts and operations / Ali Mili.
pages cm

Includes bibliographical references and index.
ISBN 978-1-118-66287-8 (cloth)
1. Computer software-Testing. 1. Title.
QA76.76.T48M56 2015
005.1'4-dc23
2015001931

Printed in the United States of America

109 8 7 6 5 4 3 21

Software Testing

Quantitative Software Engineering Series

The Quantitative Engineering Series focuses on the convergence of systems engineering with
emphasis on quantitative engineering trade-off analysis. Each title brings the principles and
theory of programming in-the-large and industrial strength software into focus.

This practical series helps software developers, software engineers, systems engineers, and
graduate students understand and benefit from this convergence through the unique weaving
of software engineering case histories, quantitative analysis, and technology into the project
effort. You will find each publication reinforces the series goal of assisting the reader with
producing useful, well-engineered software systems.

Series Editor: Lawrence Bernstein
Late Professor Bernstein was Industrial Research Professor at the Stevens Institute of

Technology. He previously pursued a distinguished executive career at Bell Laboratories.
He was a fellow of the IEEE and ACM.

Trustworthy Systems for Quantitative Software Engineering / Larry Bernstein
and C.M. Yuhas

Software Measurement and Estimation: A Practical Approach / Linda M. Laird
and M. Carol Brennan

World Wide Web Application Engineering and Implementation / Steven A. Gabarro
Software Performance and Scalability / Henry H. Liu

Managing the Development of Software-Intensive Systems / James McDonald
Trustworthy Compilers / Vladimir O. Safonov

Oracle Database Performance and Scalability: A Quantitative Approach / Henry H. Liu

Enterprise Software Architecture and Design: Entities, Services
and Resources / Dominic Duggan

Software Testing: Concepts and Operations / Ali Mili and Fairouz Tchier

Dedicated to my parents
in honor of their 68 years of mutual devotion
and to Amel, Noor, Farah Aisha, and Serena Aida.
May they realize their hopes and dreams.
A.M.

Dedicated to my loving parents,
my husband Jamel, and my children Sarah, Bellal, and Amine.
May their lives be filled with happiness and success.
F.T.

Preface

Software engineering is the only engineering discipline where product testing is a
major technical and organizational concern, as well as an important cost factor.
Several factors contribute to this state of affairs:

* The first factor that makes software testing such a big concern is, of course, the
size and complexity of software products, which make the design of software
products a high-risk, error-prone proposition.

» The second factor is the lack of a standardized development process for software
products, which means that product quality cannot be ensured by process con-
trols, and has to be ensured by product controls instead.

* The third factor is the scarcity of practical, scalable methods that can ensure prod-

uct quality through static product analysis, shifting the burden to dynamic

methods.

Other factors include the absence of a general reuse discipline, the lack of scal-

ability of correctness-preserving development methods, and the pervasiveness of

specification changes through the development, maintenance, and evolution
process, etc.

The subject of this book is the study of software testing; amongst the many books
that are currently available on the same subject, this book can be characterized by the
following premises:

e Software testing as an integral part of software quality assurance. We view soft-
ware testing as part of a comprehensive strategy for software quality assurance,
alongside many other techniques. The law of diminishing returns advocates the

Xiv

PREFACE XV

use of a variety of diverse techniques, which complement each other, in such a
way that each is used wherever it delivers the greatest return on investment.
Hence software testing is better studied in a broader context that also encom-
passes other methods rather than to be studied as an isolated set of techniques.

e Software testing as a complementary technique to static analysis. Since the early
days of software engineering, we have witnessed a colorful debate on the respec-
tive merits of software testing versus static program analysis in terms of effec-
tiveness, scalability, ease of use, etc. We take the position that each of these
techniques is effective against some type of specifications and less effective
against other types; also, very often, when we find that one technique or another
is difficult to use, it is not the result of any intrinsic shortcoming of the technique,
rather it is because the technique is used against the wrong kind of specification.
Of course, we do not always get to choose the specification against which we
must ensure product correctness; but we can, in fact, decompose a complex spec-
ification into components and map each component to the technique that is most
adapted to it. This is illustrated in Chapter 6.

o Software testing as a systematic stepwise process. Early on, software testing
earned the reputation of being a means to prove the presence of faults in pro-
grams, but never their absence; this is an undeserved reputation, in fact, because
testing can be used for all sorts of goals, as we discuss in Chapter 7. Nevertheless,
whether deserved or not, this reputation has had two consequences: first, the
assumption that the only possible goal of testing is fault exposure, diagnosis,
and removal. Second, the (consequent) belief that testing amounts merely to test
data generation, specifically the generation of test data that has the greatest
potential to expose faults. By contrast, we argue that testing follows a multiphase
process that includes goal identification and analysis, test data generation, oracle
design, test driver design, test deployment, and test outcome analysis. We devote
different chapters to each one of these phases.

* Software testing as a formal/formalizable process. Because it requires relatively
little analysis of the software product under test or its specification, testing is
often perceived as an activity that can be carried out casually, and informally.
By contrast, we argue that testing ought to be carried out with the same level
of rigor as static program verification, and that to perform testing effectively,
one must be knowledgeable in software specifications, in program correctness,
in relative correctness, in the meaning of a fault, in fault removal, etc.. This is
discussed in more detail in Chapter 6.

¢ Software testing as a goal-oriented activity. We argue that far from being solely
dedicated to finding and removing faults, testing may have a wide range of goals,
including such goals as estimating fault density, estimating reliability, certifying
reliability, etc. This is discussed in detail in Chapter 7.

This book stems from lecture notes of a course on software testing and quality
assurance and hence is primarily intended for classroom use; though it may also be
of interest to practicing software engineers, as well as to researchers in software

XVi PREFACE

engineering. The book is divided into five broad parts, including 3 or 4 chapters per
part, to a total of 16 chapters.

* Part [introduces software testing in the broader context of software engineering
and explores the qualities that testing aims to achieve or ascertain, as well as the
lifecycle of software testing.

Part II introduces mathematical foundations of software testing, which include
software specification, program correctness and verification, concepts of soft-
ware dependability, and a software testing taxonomy. It is uncommon for a soft-
ware testing book to discuss specifications, verification, and dependability to the
extent that we do in this book. We do it in this book for many reasons:

o First, we believe that it is not possible to study software testing without a sound
understanding of software specifications, since these capture the functional
attributes that are testing candidate programs against and are the basis for ora-
cle design.

o Second, when we test a program in the context of product certification or in the
context of acceptance testing, what is at stake is whether the candidate program
is correct; surely, we need to understand what correctness means, for this
purpose.

o Third, if dynamic program testing and static program analysis are to be used in
concert, to reach a more complete conclusion than any one method alone, they
need to be cast in the same mathematical model.

o Fourth, the act of removing a fault from a program, which is so central to test-
ing, can only be modeled by defining the property of relative correctness,
which provides that the program is more-correct once the fault is removed than
it was prior to fault removal; relative correctness, in turn, can only be defined
and understood if we understand the property of (absolute) correctness.

The taxonomy of software testing techniques classify these techniques according
to a number of criteria, including in particular the criterion of goals: It is impor-
tant to recognize the different goals that one may pursue in conducting software
testing, and how each goal affects all the phases of the testing lifecycle, from test
data generation to oracle design to test deployment to test outcome analysis.

* Part Il explores a phase of software testing that has so dominated the attention of
researchers and practitioners that it is often viewed as the only worthwhile issue
in software testing: test data generation. In this part, we briefly discuss some gen-
eral concepts of test data generation and then we explore the two broad criteria of
test data generation, namely: functional criteria (Chapter 9) and structural criteria
(Chapter 10). We discuss test data generation for simple programs that map ini-
tial states onto final states, as well as for state-bearing programs, whose output
depends on their input history.

e Part IV discusses the remaining phases of the software testing lifecycle that arise
after test data generation and include test oracle design, test driver design, and

PREFACE Xvii

test outcome analysis. Test oracles (Chapter 11) are derived from target specifi-
cations according to the definition of correctness and depend on whether we are
talking about simple state-free programs or about programs that have an internal
state. Test driver design (Chapter 12) depends on whether test data has been gen-
erated offline and is merely deployed from an existing medium, or whether it is
generated at random according to some probability law. As for the analysis of
test outcomes (Chapter 13), it depends of course on the goal of the test and ranges
from reliability estimation to reliability certification to fault density estimation to
product acceptance, etc.

e Part V concludes the book by surveying some managerial aspects of software test-
ing, including software metrics (Chapter 14), software testing tools (Chapter 15),
and software product line testing (Chapter 16).

In compiling the material of this book, we focused our attention on analyzing and
modeling important aspects of software testing, rather than on surveying and synthe-
sizing the latest research on the topic; several premises determined this decision:

* This book is primarily intended to be an educational tool rather than a research
monograph.

« Inan area of active research such as software testing, students are better served by
focusing on fundamental concepts that will serve them in the long run regardless
of what problem they may encounter rather than to focus on the latest techniques,
which by definition will not remain [latest for too long.

In the perennial academic debate of whether we serve our students best by making
them operational in the short term or by presenting them with fundamentals and
enabling them to adapt in the long run, we have decided to err on the side of the latter
option.

ACKNOWLEDGMENT

Special thanks are due to the late Professor Lawrence Bernstein for inviting us to
write this book for inclusion in his distinguished series.

We thank our successive cohorts of students, who tolerated our caprices as we fine-
tuned and refined the contents of our lecture notes term after term. We also thank Slim
Frikha, a summer intern from ParisTech, France, who reviewed and evaluated soft-
ware testing tools to help us with Chapter 15. This publication was made possible
in part by a grant from the Qatar National Research Fund NPRP 04-1109-1-174.
Its contents are solely the responsibility of the authors and do not necessarily represent
the official views of the QNRF.

F. TcHIER
A. ML

Contents

PREFACE Xiv
PART | INTRODUCTION TO SOFTWARE TESTING 1
1 Software Engineering: A Discipline Like No Other 3

1.1 A Young, Restless Discipline / 3

1.2 An Industry Under Stress / 5

1.3 Large, Complex Products / 5

1.4 Expensive Products / 7

1.5 Absence of Reuse Practice / 9

1.6 Fault-Prone Designs / 9

1.7 Paradoxical Economics / 10
1.7.1 A Labor-Intensive Industry / 10
1.7.2 Absence of Automation / 11
1.7.3 Limited Quality Control / 11
1.7.4 Unbalanced Lifecycle Costs / 12
1.7.5 Unbalanced Maintenance Costs / 12

1.8 Chapter Summary / 13

1.9 Bibliographic Notes / 13

vii

viii CONTENTS

2 Software Quality Attributes

2.1

22
23
24
25
2.6
2.7
2.8

Functional Attributes / 15

2.1.1 Boolean Attributes / 15
2.1.2 Statistical Attributes / 15
Operational Attributes / 17
Usability Attributes / 18
Business Attributes / 19
Structural Attributes / 20
Chapter Summary / 21
Exercises / 21

Bibliographic Notes / 22

3 A Software Testing Lifecycle

3.1
3.2
33
3.4
3.5

A Software Engineering Lifecycle / 23
A Software Testing Lifecycle / 27
The V-Model of Software Testing / 32
Chapter Summary / 33

Bibliographic Notes / 34

PART I FOUNDATIONS OF SOFTWARE TESTING

4 Software Specifications

4.1

4.2

4.4
45

4.6
4.7
4.8
4.9

Principles of Sound Specification / 38
4.1.1 A Discipline of Specification / 38
Relational Mathematics / 39

4.2.1 Sets and Relations / 39

4.2.2 Operations on Relations / 39
4.2.3 Properties of Relations / 41
Simple Input Output Programs / 42
4.3.1 Representing Specifications / 42
4.3.2 Ordering Specifications / 46
4.3.3 Specification Generation / 48
4.3.4 Specification Validation / 53
Reliability Versus Safety / 60
State-based Systems / 61

4.5.1 A Relational Model / 62

4.5.2 Axiomatic Representation / 64
4.5.3 Specification Validation / 70
Chapter Summary / 72

Exercises / 72

Problems / 76

Bibliographic Notes / 78

14

23

35

37

CONTENTS ix

5 Program Correctness and Verification 79

5.1
3.2

5.3

54
5.5
5.6
5.7

Correctness: A Definition / 80
Correctness: Propositions / 83

5.2.1 Correctness and Refinement / 83
5.2.2 Set Theoretic Characterizations / 85
5.2.3 [Illustrations / 86

Verification / 88

5.3.1 Sample Formulas / 89

5.3.2 An Inference System / 91

5.3.3 Illlustrative Examples / 94
Chapter Summary / 98

Exercises / 99

Problems / 100

Bibliographic Notes / 100

6 Failures, Errors, and Faults 101

6.1
6.2

6.3

6.4

6.5
6.6
6.7
6.8

Failure, Error, and Fault / 101

Faults and Relative Correctness / 103

6.2.1 Fault, an Evasive Concept / 103
6.2.2 Relative Correctness / 104
Contingent Faults and Definite Faults / 107
6.3.1 Contingent Faults / 107

6.3.2 Monotonic Fault Removal / 109
6.3.3 A Framework for Monotonic Fault Removal / 114
6.3.4 Definite Faults / 114

Fault Management / 116

6.4.1 Lines of Defense / 116

6.4.2 Hybrid Validation / 118

Chapter Summary / 121

Exercises / 122

Problems / 123

Bibliographic Notes / 124

7 A Software Testing Taxonomy 125

T4
7.2

7.3

7.4
7.5

The Trouble with Hyphenated Testing / 125
A Classification Scheme / 126

7.2.1 Primary Attributes / 127

7.2.2 Secondary Attributes / 131

Testing Taxonomy / 136

7.3.1 Unit-Level Testing / 136

7.3.2 System-Level Testing / 138
Exercises / 139

Bibliographic Notes / 140

X

PART Il

CONTENTS

TEST DATA GENERATION 141

8 Test Generation Concepts 143

10

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Test Generation and Target Attributes / 143
Test Outcomes / 146

Test Generation Requirements / 148

Test Generation Criteria / 152

Empirical Adequacy Assessment / 155
Chapter Summary / 160

Exercises / 161

Bibliographic Notes / 162

Appendix: Mutation Program / 163

Functional Criteria 165

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Domain Partitioning / 165

Test Data Generation from Tabular Expressions / 171
Test Generation for State Based Systems / 176
Random Test Data Generation / 184

Tourism as a Metaphor for Test Data Selection / 188
Chapter Summary / 190

Exercises / 190

Bibliographic Notes / 192

Structural Criteria 193
10.1 Paths and Path Conditions / 194

10.1.1 Execution Paths / 194
10.1.2 Path Functions / 196
10.1.3 Path Conditions / 201

10.2 Control Flow Coverage / 202

10.2.1 Statement Coverage / 202
10.2.2 Branch Coverage / 204
10.2.3 Condition Coverage / 207
10.2.4 Path Coverage / 209

10.3 Data Flow Coverage / 214

10.3.1 Definitions and Uses / 214
10.3.2 Test Generation Criteria / 217
10.3.3 A Hierarchy of Criteria / 220

10.4 Fault-Based Test Generation / 220

10.4.1 Sensitizing Faults / 221
10.4.2 Selecting Input Data for Fault Sensitization / 225
10.4.3 Selecting Input Data for Error Propagation / 227

10.5 Chapter Summary / 228

CONTENTS xi

10.6 Exercises / 229
10.7 Bibliographic Notes / 232

PART IV TEST DEPLOYMENT AND ANALYSIS 233

11 Test Oracle Design 235

11.1 Dilemmas of Oracle Design / 235

11.2 From Specifications to Oracles / 238

11.3 Oracles for State-Based Products / 242
11.3.1 From Axioms to Oracles / 243
11.3.2 From Rules to Oracles / 244

11.4 Chapter Summary / 250

11.5 Exercises / 251

12 Test Driver Design 253

12.1 Selecting a Specification / 253

12.2 Selecting a Process / 255

12.3 Selecting a Specification Model / 257
12.3.1 Random Test Generation / 257
12.3.2 Pre-Generated Test Data / 263
12.3.3 Faults and Fault Detection / 266

12.4 Testing by Symbolic Execution / 269

12.5 Chapter Summary / 274

12.6 Exercises / 275

12.7 Bibliographic Notes / 279

13 Test Outcome Analysis 280

13.1 Logical Claims / 281
13.1.1 Concrete Testing / 281
13.1.2 Symbolic Testing / 282
13.1.3 Concolic Testing / 283
13.2 Stochastic Claims: Fault Density / 284
13.3 Stochastic Claims: Failure Probability / 287
13.3.1 Faults Are Not Created Equal / 287
13.3.2 Defining/Quantifying Reliability / 289
13.3.3 Modeling Software Reliability / 291
13.3.4 Certification Testing / 294
13.3.5 Reliability Estimation and Reliability Improvement / 295
13.3.6 Reliability Standards / 299
13.3.7 Reliability as an Economic Function / 300
13.4 Chapter Summary / 307

