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Preface

Software engineering is the only engineering discipline where product testing is a
major technical and organizational concern, as well as an important cost factor.
Several factors contribute to this state of affairs:

* The first factor that makes software testing such a big concern is, of course, the
size and complexity of software products, which make the design of software
products a high-risk, error-prone proposition.

» The second factor is the lack of a standardized development process for software
products, which means that product quality cannot be ensured by process con-
trols, and has to be ensured by product controls instead.

* The third factor is the scarcity of practical, scalable methods that can ensure prod-

uct quality through static product analysis, shifting the burden to dynamic

methods.

Other factors include the absence of a general reuse discipline, the lack of scal-

ability of correctness-preserving development methods, and the pervasiveness of

specification changes through the development, maintenance, and evolution
process, etc.

The subject of this book is the study of software testing; amongst the many books
that are currently available on the same subject, this book can be characterized by the
following premises:

e Software testing as an integral part of software quality assurance. We view soft-
ware testing as part of a comprehensive strategy for software quality assurance,
alongside many other techniques. The law of diminishing returns advocates the

Xiv
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use of a variety of diverse techniques, which complement each other, in such a
way that each is used wherever it delivers the greatest return on investment.
Hence software testing is better studied in a broader context that also encom-
passes other methods rather than to be studied as an isolated set of techniques.

e Software testing as a complementary technique to static analysis. Since the early
days of software engineering, we have witnessed a colorful debate on the respec-
tive merits of software testing versus static program analysis in terms of effec-
tiveness, scalability, ease of use, etc. We take the position that each of these
techniques is effective against some type of specifications and less effective
against other types; also, very often, when we find that one technique or another
is difficult to use, it is not the result of any intrinsic shortcoming of the technique,
rather it is because the technique is used against the wrong kind of specification.
Of course, we do not always get to choose the specification against which we
must ensure product correctness; but we can, in fact, decompose a complex spec-
ification into components and map each component to the technique that is most
adapted to it. This is illustrated in Chapter 6.

o Software testing as a systematic stepwise process. Early on, software testing
earned the reputation of being a means to prove the presence of faults in pro-
grams, but never their absence; this is an undeserved reputation, in fact, because
testing can be used for all sorts of goals, as we discuss in Chapter 7. Nevertheless,
whether deserved or not, this reputation has had two consequences: first, the
assumption that the only possible goal of testing is fault exposure, diagnosis,
and removal. Second, the (consequent) belief that testing amounts merely to test
data generation, specifically the generation of test data that has the greatest
potential to expose faults. By contrast, we argue that testing follows a multiphase
process that includes goal identification and analysis, test data generation, oracle
design, test driver design, test deployment, and test outcome analysis. We devote
different chapters to each one of these phases.

* Software testing as a formal/formalizable process. Because it requires relatively
little analysis of the software product under test or its specification, testing is
often perceived as an activity that can be carried out casually, and informally.
By contrast, we argue that testing ought to be carried out with the same level
of rigor as static program verification, and that to perform testing effectively,
one must be knowledgeable in software specifications, in program correctness,
in relative correctness, in the meaning of a fault, in fault removal, etc.. This is
discussed in more detail in Chapter 6.

¢ Software testing as a goal-oriented activity. We argue that far from being solely
dedicated to finding and removing faults, testing may have a wide range of goals,
including such goals as estimating fault density, estimating reliability, certifying
reliability, etc. This is discussed in detail in Chapter 7.

This book stems from lecture notes of a course on software testing and quality
assurance and hence is primarily intended for classroom use; though it may also be
of interest to practicing software engineers, as well as to researchers in software
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engineering. The book is divided into five broad parts, including 3 or 4 chapters per
part, to a total of 16 chapters.

* Part [ introduces software testing in the broader context of software engineering
and explores the qualities that testing aims to achieve or ascertain, as well as the
lifecycle of software testing.

Part II introduces mathematical foundations of software testing, which include
software specification, program correctness and verification, concepts of soft-
ware dependability, and a software testing taxonomy. It is uncommon for a soft-
ware testing book to discuss specifications, verification, and dependability to the
extent that we do in this book. We do it in this book for many reasons:

o First, we believe that it is not possible to study software testing without a sound
understanding of software specifications, since these capture the functional
attributes that are testing candidate programs against and are the basis for ora-
cle design.

o Second, when we test a program in the context of product certification or in the
context of acceptance testing, what is at stake is whether the candidate program
is correct; surely, we need to understand what correctness means, for this
purpose.

o Third, if dynamic program testing and static program analysis are to be used in
concert, to reach a more complete conclusion than any one method alone, they
need to be cast in the same mathematical model.

o Fourth, the act of removing a fault from a program, which is so central to test-
ing, can only be modeled by defining the property of relative correctness,
which provides that the program is more-correct once the fault is removed than
it was prior to fault removal; relative correctness, in turn, can only be defined
and understood if we understand the property of (absolute) correctness.

The taxonomy of software testing techniques classify these techniques according
to a number of criteria, including in particular the criterion of goals: It is impor-
tant to recognize the different goals that one may pursue in conducting software
testing, and how each goal affects all the phases of the testing lifecycle, from test
data generation to oracle design to test deployment to test outcome analysis.

* Part Il explores a phase of software testing that has so dominated the attention of
researchers and practitioners that it is often viewed as the only worthwhile issue
in software testing: test data generation. In this part, we briefly discuss some gen-
eral concepts of test data generation and then we explore the two broad criteria of
test data generation, namely: functional criteria (Chapter 9) and structural criteria
(Chapter 10). We discuss test data generation for simple programs that map ini-
tial states onto final states, as well as for state-bearing programs, whose output
depends on their input history.

e Part IV discusses the remaining phases of the software testing lifecycle that arise
after test data generation and include test oracle design, test driver design, and
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test outcome analysis. Test oracles (Chapter 11) are derived from target specifi-
cations according to the definition of correctness and depend on whether we are
talking about simple state-free programs or about programs that have an internal
state. Test driver design (Chapter 12) depends on whether test data has been gen-
erated offline and is merely deployed from an existing medium, or whether it is
generated at random according to some probability law. As for the analysis of
test outcomes (Chapter 13), it depends of course on the goal of the test and ranges
from reliability estimation to reliability certification to fault density estimation to
product acceptance, etc.

e Part V concludes the book by surveying some managerial aspects of software test-
ing, including software metrics (Chapter 14), software testing tools (Chapter 15),
and software product line testing (Chapter 16).

In compiling the material of this book, we focused our attention on analyzing and
modeling important aspects of software testing, rather than on surveying and synthe-
sizing the latest research on the topic; several premises determined this decision:

* This book is primarily intended to be an educational tool rather than a research
monograph.

« Inan area of active research such as software testing, students are better served by
focusing on fundamental concepts that will serve them in the long run regardless
of what problem they may encounter rather than to focus on the latest techniques,
which by definition will not remain [latest for too long.

In the perennial academic debate of whether we serve our students best by making
them operational in the short term or by presenting them with fundamentals and
enabling them to adapt in the long run, we have decided to err on the side of the latter
option.
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