William Griffel

-
5
:
& ’
)
N
2
3

IFORMULAS




BEAM

FORMULAS

WILLIAM GRIFFEL

Mechanical Engineering Scientist
Department of the Army
Picatinny Arsenal

FREDERICK UNGAR PUBLISHING CO.

NEW YORK



Copyright © 1970 by
Frederick Ungar Publishing Co., Inc.

Printed in the United States of America

Library of Congress Catalog Card Number: 68-31449

Standard Book Number: 8044-4338-6



BEAM FORMULAS



Other books by the author:

HANDBOOK OF FORMULAS FOR STRESS AND STRAIN
PLATE FORMULAS

SHELL FORMULAS (in preparation)



For my grandson

SCOTT WILLIAM GRIFFEL



PREFACE

The fast tempo of the competitive industrial scene today imposes many
restrictions on the engineer. One prime restriction is time.

A valuable aid—particularly for the design engineer—when working
against a project deadline, is the use of the most simplified, accurate, and
least time-consuming beam formulas. The order of simplification should be
such that a complex beam analysis can be reduced merely to an exercise in
algebra. This is precisely the purpose of this volume.

Tabulated equations for beams are presented to supply the practicing
engineer with ready-to-be-used formulas in their most simplified form.
Examples are provided to show how to solve a beam with any combination
of load and support using the formulas in this book.

My knowledge of the French, German, and Polish languages has
allowed me to survey the field of the strength of materials—with the startling
conclusion that the presentation of beam formulas has not changed for the
last quarter century. Textbook equations for the deformation of beams are
still cumbersome and, even more important, quite time consuming,

With simplicity as the predominant factor, I have rewritten the standard
beam formulas using a unique nondimensional form which facilitates the
evaluation of equations by slide rule. In addition, a table is provided in
which nondimensional quantities are given numerically.

This volume, third in a series of four, contains 101 loading conditions
for beams and rigid frames with various supports, each complete with load,
shear, moment, and deflection diagrams. Using the formulas for fixed-end
moments in this volume, the tabulated data could also be used for con-
tinuous beams or frames. In the case of an indeterminate analysis, data for
end slopes and deflections can also be taken from the book.

To expose the nondimensional beam formulas to criticism, I have
published them in Product Design and Value Engineering. The readers’
reactions were most encouraging and some of their constructive suggestions
were incorporated in the book.
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viii Preface

A book on beam formulas would not be complete without chapters on
simultaneous loading and beams on elastic foundations. Tabulated, simplified
equations for beams under simultaneous axial and transverse loading appear
in my first book, Handbook of Formulas. In this volume, the formulas are
extended to include cases where the axial load is near zero.

The proper arrangement of supports of beams (if required) is of prime
importance from the viewpoint of economy of material. This relates both
to statically determinate and statically indeterminate beams. Section 5 deals
with this subject.

In collating this material, I have had to rely on the work and contri-
butions of others. It is my sincere hope that due acknowledgment has been
made to the source of all material. To the publishers and others who have
generously permitted the use of the material, I wish to express my apprecia-
tion. Most of the material of this volume is based on my 130 articles published
from 1961 to 1969 in the following professional magazines: Product Engineer-
ing, Design News, Machine Design, Engineering Materials and Design,
Product Design and Value Engineering, and Design Engineering. The oppor-
tunity thus afforded for criticism was of great advantage.

WILLIAM GRIFFEL
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Part 1
DEFINITIONS AND SYMBOLS

1 BASIC PRINCIPLES AND DEFINITIONS*

General

It is assumed that engineers using this volume are thoroughly familiar
with the basic principles of strength of materials, such as can be found in any
standard textbook on this subject. A brief summary of such material is pre-
sented here for the sake of uniformity and to emphasize certain principles of
special importance.

Stress

The term stress as used here always implies a force per unit area and is a
measure of the intensity of the force acting on a definite plane passing through
a given point. The stress distribution may or may not be uniform, depending
on the nature of the loading condition. For example, tensile stresses as found
from the equation S = P/A are considered to be uniform, whereas the bending
stress determined from the equation S = Mc/I refers to the stress at a point
located at a distance ¢ from the neutral axis. Obviously the stress over the cross
section of a member subjected to bending is not uniform.

Normal and shear stresses. The stresses acting at a point in any stressed
member can be resolved into components acting on planes through the point.

The normal and shear stresses acting on any particular plane are the stress
components perpendicular and parallel, respectively, to the plane. A simple
conception of these stresses is that normal stresses tend to pull apart (or press
together) adjacent particles of the material, whereas shear stresses tend to
cause such particles to slide on each other.

Axial strain. This term refers to the elongation per unit length in a
member or portion of a member in the axial direction. There are usually

* Reference 19.



2 BASIC PRINCIPLES AND DEFINITIONS

strains present in other directions also. To determine the stress state of a
member, therefore, strains in three directions must be considered, and the
principle stresses can then be calculated.

Poisson’s ratio. Uniaxial strain in a metal is always accompanied by
lateral strains of opposite sign in the two directions mutually perpendicular
to the uniaxial strain. Under uniaxial conditions, the absolute value of the
ratio of either of the lateral strains to the uniaxial strains is called Poisson’s
ratio. This ratio is usually between 0.25 and 0.33 for steel and aluminium alloys.
In multiaxially stressed members, the lateral strain will affect strain readings
and must be considered in strain measurements under these conditions. The
formulas for principle stresses and principle strains in terms of the other
principle stresses are given in standard texts on the theory of elasticity. For
materials stressed beyond the elastic limit Poisson’s ratio is not a constant
but is a function of the axial strain.

Shearing strain. If a square element of uniform thickness is subjected
to pure shear there will be a displacement of each side of the element relative
to the opposite side. The shearing strain is obtained by dividing this displace-
ment by the distance between the sides of the element. It should be noted that
shearing strain is obtained by dividing a displacement by a distance at right
angles to the displacement, whereas axial strain is obtained by dividing the
deformation by a length measured in the same direction as the deformation.

Tensile Properties

When a specimen of a certain material is tested in tension it is customary
to plot the results of such a test as a *“‘stress-strain diagram.” This diagram
forms the basis for most strength specifications and should be thoroughly
understood and frequently applied. Typical tensile diagrams, not to scale,
are shown in Fig. 1. It should be noted that the strain scale is nondimensional,
whereas the stress scale is in pounds per square inch. The important physical
properties which can be shown on the stress-strain diagram are discussed in
the following sections.

Modulus of elasticity (E). Referring to Fig. 1, it will be noted that the
first part of the diagram is substantially a straight line. This indicates a constant
ratio between stress and strain over that range. The numerical value of the
ratio is called the modulus of elasticity, denoted by E. It will be noted that
E is the slope of the straight portion of the stress-strain diagram and is
determined by dividing the stress (in pounds per square inch) by the strain
(which is nondimensional). Therefore, E has the same dimensions as a stress.
A useful conception of E is the stress at which the member would have
elongated a distance equal to its original length (assuming no departure from
the straight portion of the stress-strain diagram).

Other moduli that are often of interest are the tangent modulus E, and
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Figure 1.

the secant modulus E;. The tangent modulus is the slope of the stress-strain
diagram at a point corresponding to a given stress, whereas the secant modulus
is the slope of a line drawn through the same point and the origin.

Tensile proportional limit. Since it is practically impossible to determine
the stress at which the stress-strain diagram begins to depart from a straight
line, it is customary to assign a small value of permanent strain for this
purpose. As a rule, the limit of proportionality will be taken as the stress at
which the stress-strain diagram departs from a straight line by a strain of
0.0001. This property or characteristic of a material gives an indication of the
type of stress-strain diagram which applies in the working range. It also
indicates the stress beyond which the standard value of E cannot be accurately
applied. This is of special interest in the analysis of redundant structures.

Tensile yield stress. The stress-strain diagrams for some steels show a
sharp break at a stress below the ultimate tensile stress. At this critical stress
the material elongates considerably with little or no increase in stress. (Refer
to Fig. 1.) The stress at which this takes place is referred to as the yield point.
Nonferrous metals and some steels do not show this sharp break but yield
more gradually so that there is no definite yield point. This condition is
illustrated in Fig. 1. Since permanent deformations of any appreciable amount



4 BASIC PRINCIPLES AND DEFINITIONS

are undesirable in most structures, it is customary to adopt an arbitrary
amount of permanent strain that is considered admissible for general purposes.
The value of this strain has been established by material testing engineers as
0.002, and the corresponding stress is called the yield stress. For practical
purposes, this may be determined from the stress-strain diagram by drawing
a line parallel to the straight or elastic portion of the curve through a point
representing zero stress and 0.002 strain. The yield stress is taken as the stress
at the intersection of this straight line with the stress-strain curve.

Ultimate tensile stress. Figure 1 shows how the ultimate tensile stress is
determined from the stress-strain diagram. It is simply the stress at the
maximum load reached in the test. It should be noted that all stresses are
based on the original cross-sectional area of the test specimen, without regard
to the lateral contraction of the specimen which actually occurs during the
test. The ultimate tensile stress is commonly used as a criterion of the strength
of the material of aircraft structures.

Compressive Properties

The results of compression tests can be plotted as stress-strain diagrams
similar to those shown in Fig. 1 for tension. The preceding remarks (with the
exception of those pertaining to ultimate stress) concerning the specific tensile
properties of the material apply in a similar manner to the compressive
properties. It should be noted that the moduli of elasticity in tension and
compression are approximately equal for most of the commonly used
structural materials.



2 TYPES OF FAILURES

General

In the following discussion the term ““failure” will usually denote actual
rupture of the member, or the condition of the member when it has just
attained its maximum load.

Material Failures

Fracture of a material may occur by either a separation of adjacent
particles across a section perpendicular to the direction of loading or by a
sliding of adjacent particles along other sections. In some cases the mechanism
of failure includes both of these actions. For instance, in a simple tension test
sliding action along inclined sections may occur first with a consequent
reduction in the cross-sectional area of the specimen. This may result in strain
hardening of the material so that the resistance to sliding is increased, and the
final failure may occur by separation of the material across a section per-
pendicular to the direction of the loading.

Direct tension or compression. This type of failure is associated with the
ultimate tensile or compressive stress of the material. For compression it can
apply only to members having large cross-sectional dimensions as compared
to the length in the direction of the load.

Shear. Pure shear failures are usually obtained only when the shear
load is transmitted over a very short length of the member. This condition is
approached in the case of rivets and bolts. In cases where the ultimate shear
stress is relatively low, a pure shear failure may result, but in general a member
subjected to a shear load fails under the action of the resulting normal stresses
usually the compressive stresses. The failure of a tube in torsion, for instance,
is not usually caused by exceeding the allowable shear stress but by exceeding
a certain allowable normal compressive stress which causes the tube to buckle.
It is customary, for convenience, to determine the allowable stresses for
members subjected to shear in the form of shear stresses. Such allowable
shear stresses are therefore an indirect measure of the stresses actually causing
failure.

Bearing. The failure of a material in bearing may consist of crushing,
splitting, or progressively rapid yielding in the region where the load is applied.

5



6 TYPES OF FAILURES

Failure of this type will depend, to a large extent, on the relative size and shape
of the two connecting parts. The allowable bearing stress will not always be
applicable to cases in which one of the contacting members is relatively thin.
It is also necessary, for practical reasons, to limit the working bearing stress
to low values in such cases as joints subjected to reversals of load or in bearings
between movable surfaces. These special cases are covered by specific rulings
involving the use of higher factors of safety.

Bending. For compact sections not subject to instability, a bending
failure can be classed as a tensile or compressive failure caused by exceeding
a certain allowable stress in some portion of the specimen. It is customary to
determine, experimentally, the modulus of rupture in bending, which is a stress
derived from test results through the use of equation Mc¢/I in which case M is
the value of bending moment which caused failure. If not determined experi-
mentally, the value of the modulus of rupture in bending may be assumed
equal to the ultimate tensile stress when instability is not critical. Since the
above equation is based on assumptions which are not always fulfilled at
failure, the modulus at failure cannot be considered as the actual stress at
the point of rupture. This should be borne in mind in dealing with combined
stresses, such as bending and compression, or bending and torsion.

Failure due to stress concentrations. The static strength properties are
determined on machined specimens containing no notches, holes, or other
avoidable stress raisers. In the design of machine structures such simplicity
is unattainable, and stress distributions are not of the uniform quality obtained
in the specimen tests. Consideration must be given to this condition since
maximum stresses in a material, and not average stresses, are the critical
factor in design. The effects of stress raisers vary, and references should be
made to available data.

Failure due to fatigue. Although the component parts of structures are
usually designed for static load conditions, they are subjected in service to
repeated loads. It is well known that the strength of a material under repeated
loads is less than that which would be obtained under static loading. This
phenomenon of the decreased strength of a material under repeated loading
is commonly called fatigue. Stress raisers, such as abrupt changes in cross
section, holes, notches and re-entrant corners, cause a much greater effect on
the fatigue strength than they do on static strength. The local high-stress
concentrations caused by such stress raisers are often greatly in excess of the
nominal calculated stress on the part, and consequently it is at such locations
that fatigue fractures usually begin. Other factors of major importance in
fatigue are the range of a repeated stress cycle, from maximum to minimum
stress, and the mean stress in the stress cycle.

Failure from combined stresses. In combined stress conditions where
failure is not caused by buckling or instability, it is necessary to refer to some
theory of failure. The “maximum shear” theory has received wide acceptance
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as a simple working basis in the case of ductile materials. It should be noted
that this theory interprets failure as the first yielding of the material, so that
any extension of the theory to cover conditions of final rupture must be based
on the experience of the designer. The failure of brittle materials under com-
bined stresses can generally be treated by the ‘“maximum stress” theory.



