M

=)
xE

P a7

7]
Lb]
-
r
Q
7]
on
s
o
(0]
(0]
=
=1}]
=
m
o
=
(]
.
=
o
L75]

P AL AR

—— B) X RImFE (EHR)

Component Software: Beyond Object-Oriented Programming, Second Edition

=

Dominik Gruntz Stephan Murer

[2€] Clemens Szyperski

Publishing House of Electronics Industry

http://www.phei.com.cn

% FIY & AR A2

*
v
g
e

S B
L AN

— BHRE RN REE (E2R)

Component Software: Beyond Object-Oriented Programming, Second Edition

BNXALHZFENE—RETZE, XHRATAEMNAGEERERER, EJB.
J2EE. CORBA 3. COM+ & NET gyH¥0, ME#B# OOP fyta it IR ELER
FHMBNIEE. 2PABRNENHIER THENTIZS, BETXHEHmESEN
ZE, ZHNEWERENNE: HFBTRTRERANXFOERERAE.

AEBBHREFEAR. Z52H4AT. CTORURRESGER A REBAGLTER
R AR BB R HHA,

E_RHERHFRE:
P IR ANLEESY, 235 COM+. CORBA, EJB LK J2EE

b x—LEEHMOEARNRE SRR HTTEN, 510 NET, CORBAMIHHHEE XML Web
RS . FAETENWMSHIER XML MR AT A 1E

p 7 Java #1 Component Pascal fE#tZ _E38in T FIH C# RS K6+

Clemens Szyperski: i+ Oberon &G ATHIEIEAZ —, 355 T BlackBox#4
SR (ARAFRENREENFRFRZ—) MFH, 2T IF5FARARERXY

RBifE, B2 5T ZTEXNEXARESHITHITIE, SzyperskiFEAR TITZFR
NEHRE TETEHEE.

ISBN 7-5053-8927~

E§ | =@ B
9

ABWEEHMARWRE, UKBHMIRSEE. BERES
ISBN 7-5053-8927-0/TP - 5178 7Eff. 59.00 T

7505"389

RGETREAS

LR
— B X 5 e

(%=H)
(FXH)
Component Software
Beyond Object-Oriented Programming

Second Edition

Clemens Szyperski
[#] Dominik Gruntz =2
Stephan Murer

®F I H & AR A
Publishing House of Electronics Industry
Jt&t - BEUING

nEE T

ABLENA TR HBAY RO TR, (6E A STHMRRENAD , BEFEAXMME . #
O, x5, #HR | HER, AREWEEARESNANIHE, BH4E OMG. SunFl Microsoft HIFRTTE, At
RATHHERSHATE; JFEERERZ B, FHETHARERSH, URMFNESR. R A%%S5
FEMBHEXNAE. B, ABENTHREGHEARNTSGIR. 2HERE, AFFE, BEES%, ¥
MAFEIFABERFT T oM, B, B—FRFHKAEARSE S,

FHEETAERGBRIT BRI REEGTFRAR . RERMIM, CTO, RERBRARF.

© Clemens Szyperski 2003.

This edition of Component Software: Beyond Object—Oriented Programming, Second Edition is published by arrange—
ment with Pearson Education Limited.

All Rights Reserved.

English language reprint edition published by Publishing House of Electronics Industry. Copyright © 2003.

Licensed for sale in mainland territory of the People’s Republic of China only, excluding Hong Kong.

IS ENR B Pearson Education Limited B FHEF Tk ikt . K& HRE TP EISFAT, AMELMEME
ARFREHSZDEEFHAZE

HRANREFEARLIMERAN (AEEEE. RIINITBRRUREBHK) RITS5HE.

BARA S ERBCES: BF: 01-2002-5480
BEER%E (CIP) ¥iFE

P AR A —ABAR T] X 52 4R 78 = Component Software: Beyond Object Oriented Programming, Second Edition:;
BIRR/ (X)) BMARTE (Szyperski, C.) %3, - JL5: 7 TLH AL, 2003.8

(BUETERAS)

ISBN 7-5053-8927-0

[.#.. T.#%. II®EEIE-FEL IV.TP31LS
o E A< B $51E CIP R (2003) 55062597 5

FiEHEE: B/-0

EN R & JLRIAEEDRIT

MR FT: BF TRt hitp://www.phei.com.cn
AETEER THER 17355 B4 100036
HHF L

: 787 x 980 1/16 El5k; 38.75 F¥. 868 TF
20034E8 ASE 1R 2003E38 A% 1 KRER
59.00 7t

A ELF T L HRAGE S, A EREM, HAOBWELE AR, SHEEE, FE5RAALITHRBEE, B
Z¥35: (010) 68279077

RS H R
SUNE

Preface to the second edition

Writing a book is hard work; preparing a new edition of one’s own old words
is even harder in many ways. My motivation for venturing into this work is the
strong and positive feedback and encouragement I received over the past years
from so many of my readers. The first edition of this book achieved a level of
worldwide recognition well beyond my hopes. Today, the topic area is promi-
nent enough to attract many good authors to write books on the many facets
of component software. Some of this work comes to my attention in its early
stages, for instance when submitted to a conference where I serve on the pro-
gram committee. More mature work reaches me in my function as series editor
of Addison-Wesley’s Component Software Series. Yet, all this is only scratching
the tip of the proverbial iceberg: much is happening in this field at large. Any
fair and complete coverage of this ballooning field is now close to impossible
and I make no pretense that this second edition gets close to such coverage.
Instead, I hope to include what I perceive as the major trends, both as a con-
tinuation from what I described in the first edition and also entirely new devel-
opments that have emerged since.

In its first edition, this book has been adopted as primary or recommended
reading for many university courses in countries around the globe. Close to my
heart is the fact that the first edition was translated into Polish — my family name
is Polish — but reading it is entirely beyond my own language skills as I hardly
speak two Polish words. Some of these developments are traced on a web page
I maintain (there is a link from my homepage at www.research.microsoft.
com/~cszypers/). Some of the problems I had reported as open in the first edi-
tion have attracted the attention of several researchers, leading to progress on
several fronts: this second edition reports on some of the progress made.

Concurrent to these scientific developments, we have seen an explosive
development of component software technologies. On the one hand, many
technologies did not survive long after I closed the first edition in mid 1997 —
OpenDoc and SOM are two visible cases; there are many others. On the other
hand, many of the technologies relevant today were not even around back then.
For example, Enterprise JavaBeans and Java 2 Enterprise Edition on the Java
front, as well as the CORBA Component Model and CORBA 3 had yet to hap-

« 11 -

pen. CORBA had yet to embrace Java and J2EE had yet to embrace CORBA.
COM+ had just become visible and .NET did not exist back then. XML and
UML were just appearing on the radar screen, but hadn’t had their over-
whelming impact yet. Practically all XML-related standards (XML Schema,
XML Namespaces, XPath, XLink, XPointer, XQuery, XSL, XSLT, and others)
had yet to be publicized. Web Services and their supporting standards (SOAP,
WSDL, UDDI, and so on) were entirely unheard of. Much of the work lead-
ing to many of these had, of course, been going on behind the scenes — and for
years — but it had been far too early for any useful coverage to be included in a
work like this book.

At the time of writing the first edition, it had been painfully clear that for
component technologies to go much further, domain-specific standards were
an absolute requirement. Much has happened since, especially in connection
with XML. Put under pressure by a rapidly tightening need for businesses to
form business-to-business chains, and put into agreeable form by the technol-
ogy-neutral and thus “harmless” XML approach, domain-specific standards are
now mushrooming. Organizations such as BizTalk, DMTF, IETF, OAG,
OASIS, OMG, UDDI, W3C, and WS-I rapidly build repositories of XML-
based domain standards. Domain-specific organizations in many industries are
adding to this gold rush. Clearly, we will soon see too many rather than too few
standards in many important domains, which will undoubtedly lead to a shake-
out over the coming years. (However, notice that the world seems to have an
insatiable hunger for standards!)

In line with many hopeful predictions, yet still not quite as explosive as some
had hoped, the market side of software components has also matured signifi-
cantly since this book first appeared. There are now several companies, includ-
ing ILOG and Rogue Wave Software, deriving most of their revenue from soft-
ware components and several others fully focusing on making the market-side
work, including ComponentSource and Flashline. The latter companies include
warehousing, brokering, and mediation services that bridge supply and demand
sides, just as is already well-established practice in the component worlds of
other engineering disciplines.

All in all, it is now time for a second edition. The theme, the balanced and
critical viewpoint (I hope), overall structure, and emphasis on foundations and
principles have not changed. A myriad of detail-level improvements and cor-
rections re-establish the link to this quickly evolving field. The most significant
additions can be found in Part Three, covering the state-of-the art component
technologies. Part Four used to be about the next generation of technologies
and problems to tackle. This has now changed and offers, instead, a perspective
on components meeting architecture and processes. While this has always been
the main theme of the fourth part, it is now possible to draw on rich examples
from current technologies rather than on speculation of what might be.

For guidance on how to read this book and on whom it addresses, consult
the original preface that I retain in its entirety.

<12 -

The endless struggle for perfect terminology

What is a software component? As with the first edition, this book has many
pages on that fundamental question. It contains three different definitions that
adopt different levels of abstraction: a first one is found at the very beginning
of the original Preface; a second in Chapter 4; and a final one in Chapter 20.
The existence of more than one definition in this book — and quite a few more
cited from related work (see Chapter 11) — has led to some turbulence.
Krzysztof Czarnecki and Ulrich Eisenecker (2000), in their excellent book
Generative Programminyg, went as far as claiming that the term “component”
(and thus “software component”) cannot be defined - for a brief discussion see
section 11.12.

I received a lot of feedback on the first edition that addressed my choice of
terminology, telling me that I had overstretched certain terms. I ran into par-
ticular trouble with my use of the terms “binary form” and “no persistent
state,” both of which I claimed a software component had to comply with. This
has led to toing and froing on various occasions, but I have ended up defend-
ing my original choice of words. Such disputes over words have led to rather
productive opinion-forming exchanges over the deeper issues — the one that has
run the longest and is my favorite being the “Beyond Objects” series of month-
ly columns in Software Development magazine (www.sdmagazine.com), created
by Roger Smith. This series includes contributions by Grady Booch, Cris
Kobryn, Bertrand Meyer, Bruce Powel Douglass, Jeff Scanlon, and me; others
might chip in as the series evolves. I encourage readers to browse these columns
as they are naturally closer to the pulse of time than a book can be.

New terminology in this second edition focuses on two developments — the
growing importance of component deployment, and the relationship between
components and services. To address the deployment process, I now distinguish
deployable components (or just components) from deployed components (and,
where important, the latter again from installed components). Component
instances are always the result of instantiating an installed component — even if
installed on the fly. Services are different from components in that they require a
service provider. A service is an instance-level concept — where such instances can
be component instances. These instances are “live” and thus require grounding
in concrete hardware, software, and organizational infrastructure. The term
“service” is unfortunately even more overloaded than the term “component.” I
did not try to rename the many things called service throughout the book, fol-
lowing the many established usages of this word. Instead, I use the term “web
service” when referring to a service that is concretely provided, ultimately by
some organization (or individual). This convention isn’t strictly accurate, as non-
web services can have the same properties, but trying to establish an entirely new
term, such as “provided service” seemed worse. (To be even more precise, most
concrete discussion in this book is about XML web services — a subset of web
services that relies on XML as the fundamental representation format.)

<13 -

I have tried to improve some terminology over the first edition to minimize
misunderstandings. After careful deliberation, I decided to change terms only
in two cases. I avoided changes in all other cases to maintain continuity from
the first edition and avoid confusion that would be caused by the many refer-
ences to this book that can be found in the wider literature. (For the same rea-
son, I also decided to leave the top-level chapter structure intact.)

The first change is from old “binary form” to new “executable form.” This
new term makes it much more obvious that I am after a form for components
that is defined relative to some execution engine, whether this is a script inter-
preter, a JIT compiler, or a processor, and that I am not insisting on the bina-
ry format dictated by a particular processor or operating system. This change
causes some slight friction when discussing the notions of “COM as a binary
standard” and “binary release-to-release compatibility.” I retained the use of
“binary” in these widely established cases. The new term is also somewhat too
specific in that a software component also contains metadata and resources
(immutable data), none of which are executable in a strict sense, but then nei-
ther are they necessarily binary. (For completeness, a degenerate component
might contain nothing but such non-executable items. Other authors have thus
opted for “machine interpretable.”) Finally, there is a danger that some might
interpret executable as meaning “must have a main() entry point,” which clear-
ly isn’t intended. With terminology it is impossible to win.

The second change is from old “no persistent state” to new “no observable
state.” This addresses a common confusion, that persistence in the sense of
external stable storage is somehow involved here, which wasn’t the intention.
Another common confusion cannot be addressed by simple terminology
change. This is that whenever I say “component” (or, more precisely, “software
component”) I am not referring to object-like instances, but, rather, to notions
that are more stable across time and space, such as classes, modules, or
immutable prototype objects. Components are the units of deployment and,
often, components contain classes or other means to create regular instances
(objects). I am not, in general, worried about stateful objects, but merely
exclude stateful components, which amounts to excluding the observable use of
global variables (aka static variables). Occasionally it is appropriate to use such
variables for caching purposes — thus the restricted exclusion of an observable
state only. Much of this confusion has been triggered by the discussion of
whether or not to support objects that carry state across transactional session
boundaries in systems such as COM+ or EJB (E]JB does allow such objects;
COM+ does not.) As should be clear by now, such “stateful objects” and the
claim that software components have no (observable) state have nothing to do
with each other.

« 14 -

Updated statement and time stamp

I completed the second edition in the first half of 2002 - after a lengthy jour-
ney of well over a year’s duration. I wish to acknowledge that I have added yet
another bias to my list of biases — this time by joining Microsoft Research in
1999. While I hope that I succeeded in retaining the balance of my original
work, I certainly understand if readers are more skeptical about this than they
were before this development. After all, I am now employed by one of the pri-
mary parties involved, rather than being an academic observer with a hand in a
small Swiss company alone (a role that I happily still retain). However, this
book should certainly not be seen as necessarily coinciding with the views of
Microsoft. Some may sense that I am overly or prematurely enthusiastic about
.NET or web services, but I gave the same benefit of the doubt to then-young
Java (JavaBeans, for instance, emerged while I was working on the first edition)
and today I am giving it to the CORBA Component Model.

To offset such skepticism, I invited Dominik Gruntz to carefully review and
contribute to the core chapter on Java and Stephan Murer to do the same for
the core chapter on OMG standards and technologies. Both are long-standing
friends who had already helped with their comments on the draft of the first
edition. I am most grateful to them both for accepting my invitation and help-
ing me to uphold the spirit of this book into its second edition. I would like to
thank Christian Becker, Bill Councill, Scott Crawford, George Heineman, and
an anonymous reviewer for reviewing the entire draft and providing many use-
ful comments and suggestions. Hans Jonkers and Ron Kay provided further
comments on the basis of the first edition. Alistair Barros drew on his extensive
experience and helped with many details regarding EJB servers.

Any remaining mistakes and possibly undue bias are of course mine.

Clemens Szyperski
Redmond, May 2002

<15 -

Preface

(The following preface remains unedited from the first edition. References to
“recent” developments should be seen from a historic perspective in our fast-moving
worid.)

Software components enable practical reuse of software “parts” and amorti-
zation of investments over multiple applications. There are other units of reuse,
such as source code libraries, designs, or architectures. Therefore, to be specif-
ic, software components are binary units of independent production, acquisition,
and deployment that intervact to form a functioning system. Insisting on inde-
pendence and binary form is essential to allow for multiple independent ven-
dors and robust integration.

Building new solutions by combining bought and made components
improves quality and supports rapid development, leading to a shorter time to
market. At the same time, nimble adaptation to changing requirements can be
achieved by investing only in key changes of a component-based solution,
rather than undertaking a major release change.

For these reasons, component technology is expected by many to be #he cor-
nerstone of software in the years to come. There exists at least one strong indi-
cator: the number of articles and trivia published on these matters grows expo-
nentially. Software component technology is one of the most sought-after and
at the same time least-understood topics in the software field. As early as 1968,
Doug Mcllroy predicted that mass-produced components would end the so-
called software crisis (Naur and Randall, 1969). With component technology
just on the verge of success in 1997, this is a 30-year suspense story.

Software components are clearly not just another fad — the use of compo-
nents is a law of nature in any mature engineering discipline. It is sometimes
claimed that software is too flexible to create components; this is not an argu-
ment but an indication of immaturity of the discipline. In the first place, com-
ponent markets have yet to form and thus many components still need to be
custom-made. Introduction of component software principles at such an early
stage means: preparing for future markets.

Even in a pre-market stage component software offers substantial software
engineering benefits. Component software needs modularity of requirements,

<16

architectures, designs, and implementations. Component software thus encour-
ages the move from the current huge monolithic systems to modular structures
that offer the benefits of enhanced adaptability, scalability, and maintainability.
Once a system is modularized into components, there is much less need for
major release changes and the resulting “upgrade treadmill” of entire systems.

Once component markets form, component software promises another
advantage: multiplication of investment and innovation. Naturally, this multi-
plier effect, caused by combining bought and custom-made components, can
only take effect when a critical mass is reached — that is, a viable market has
formed. For components to be multipliers, there needs to be a competitive mar-
ket that continually pushes the envelope - that is, it continually improves
cost—performance ratios. However, creating and sustaining a market is quite a
separate problem from mastering component technology. It is this combination
of technical and economic factors that is unique to components.

It is indeed the interplay of technology and market strategies that is finally
helping components to reach their long-expected role. However, it would be
unfair to say that technically this has been possible since the early days of
objects. After all, objects have been around for a long time: Simula’s objects,
for example, date back to 1969. The second driving force behind the current
component revolution is a series of technological breakthroughs. One of the
earliest was the development at Xerox PARC and at NeXT in the late 1980s.
The first approach that successfully created a substantial market came in 1992
with Microsoft’s Visual Basic and its components (VBXs). In the enterprise
arena, OMG’s CORBA 2.0 followed in mid-1995. The growing popularity of
distribution and the internet led to very recent developments, including
Microsoft’s DCOM (distributed component object model) and ActiveX, Sun’s
Java and its JavaBeans, the Java component standard.

There is one technical issue that turned out to be a major stumbling block on
the way to software component technology. The problem is the widespread mis-
conception of what the competing key technologies have to offer and where
exactly they differ. In the heat of the debate, few unbiased comparisons are
made. It is a technical issue, because it is all about technology and its alleged
potential. However, it is just as much a social or societal issue. In many cases, the
problems start with a confusion of fundamental terminology. While distribution,
objects, and components really are three orthogonal concepts, all combinations
of these terms can be found in a confusing variety of usages. For example, dis-
tributed objects can be, but do not have to be, based on components — and com-
ponents can, but do not have to, support objects or distribution.

The early acceptance of new technologies (and adoption of “standards”) is
often driven by non-technical issues or even “self-fulfilling prophecies.” Proper
standardization is one way to unify approaches and broaden the basis for com-
ponent technology. However, standards need to be feasible and practical. As a
sanity check, it is helpful if a standard can closely follow an actual and viable
implementation of the component approach. What is needed is a demonstration

=17 -

of the workability of the promised component properties, including a demon-
stration of reasonable performance and resource demands. Also, there need to
be at least a few independently developed components that indeed interoperate
as promised.

For a good understanding of component software, the required level of
detail combined with the required breadth of coverage can become over-
whelming. However, important decisions need to be made - decisions that
should rest firmly on a deep understanding of the nature of component soft-
ware. This book is about component software and how it affects engineering,
marketing, and deployment of software. It is about the underlying concepts, the
currently materializing technologies, and the first stories of success and failure.
Finally, it is about people and their involvement in component technology.

This book aims to present a comprehensive and detailed account of most
aspects of component software: information that should help to make well-
founded decisions; information that provides a starting point for those who
then want to dig deeper. In places, the level of detail intentionally goes beyond
most introductory texts. However, tiring feature enumerations of current
approaches have been avoided. Where relevant, features of the various
approaches are drawn together and directly put into perspective. The overall
breadth of the material covered in this book reflects that of the topic area; less
would be too little.

Today there are three major forces in the component software arena. The
Object Management Group, with its CORBA-based standards, entered from a
corporate enterprise perspective. Microsoft, with its COM-based standards,
entered from a desktop perspective. Finally, Sun, with its Java-based standards,
entered from an internet perspective. Clearly, enterprise, desktop, and network
solutions will have to converge. All three players try to embrace the other play-
ers’ strongholds by expansion and by offering bridging solutions. As a result, all
three players display “weak spots” that today do not withstand the “sanity
check” of working and viable solutions. This book takes a strategic approach by
comparing technical strengths and weaknesses of the approaches, their likely
directions, and consequences for decision making.

Significant parts of this book are non-technical in nature. Again, this reflects
the very nature of components — components develop their full potential only
in a component market. The technical and non-technical issues are deeply inter-
twined and coverage of both is essential. To guide readers through the wide
field of component software, this book follows an outside-in, inside-out
approach. As a first step, the component market rationale is developed. Then,
component technology is presented as a set of technical concepts. On the basis
of this foundation, today’s still evolving component approaches are put into
perspective. Future directions are explained on the grounds of what is current-
ly emerging. Finally, the market thread is picked up again, rounding off the dis-
cussions and pointing out likely future developments.

<18 -

Who should read this book — and how: roadmaps

As wide as the spectrum of this book is so, it is envisioned, are the backgrounds
and interests of its expected readers. To support such a variety of readers, the
book is written with browsing in mind. Most chapters are relatively self-contained
and so can be read in any order, although sequential reading is preferable. Where
other material is tightly linked, explicit cross-references are given. For selective
“fast forwards,” various references to later sections are given to aid skipping to
natural points of continuation. Forward references are always of an advisory
nature only and can be safely ignored by those reading the book sequentially.

Professionals responsible for a company’s software strategy, technology eval-
uation, or software architecture will find the book useful in its entirety. Reading
speed may need to be adjusted according to pre-existing knowledge in the var-
ious areas covered in Parts Two and Three. The numerous discussions of rela-
tive advantages and disadvantages of methods and approaches are likely to be
most useful.

Managers will find the coverage sufficiently general to enable the formation
of a solid intuition, but may want to skim over some of the more detailed tech-
nical material. In the end, decisions need to be based on many more factors
than just the aspects of a particular technology. To this end, the book also helps
to put component technology into perspective. A suggested path through this
book is Part One; Chapters 4, 8, and 11 of Part Two; Chapters 12 and 17 of
Part Three; Part Five.

Developers will appreciate the same intuition-building foundation, but will
also find enough detail on which to base technical decisions. In addition, devel-
opers facing multiple platforms or multiple component approaches will find the
many attempts at concept unification useful. Fair technical comparison of sim-
ilarities and differences is essential to develop a good understanding of the var-
ious tradeoffs involved; terminology wars are not. A suggested path through
this book is Parts Two, Three, and Four, supported by Parts One and Five if
market orientation is required.

Academics and students on advanced courses will find the book a useful and
rich source of material. However, although it could serve as reference reading for
various units, it is not a textbook. Those studying units focusing on component
technology will benefit the most from reading this book, including coverage of
specific component technologies such as Java or ActiveX. If the units are on soft-
ware engineering, students will also benefit from the information in these pages.
Finally, if the units are on advanced or comparative programming languages, stu-
dents could find this book useful as they may expand to lInguage issues in com-
ponent technology. A suggested path through this book depends on the needs of
the particular subject. Part Two, and in particular Chapter 4, forms a basis;
Chapters 5, 6, and 7 can be included for more intensive courses or postgraduate
studies. The remaining chapters of Part Two can be included selectively. Part
Three offers a rich selection of detailed information on current technology. Part

+19 -

Four explores current developments. Parts One and Five may be of interest for
readers on courses with an organizational or market perspective.

Statement and time stamp

I completed this book in the first half of 1997. In a rapidly emerging and
changing field, a certain part of the material is likely to be out of date soon. I
tried to avoid covering the obviously volatile too deeply and, instead, aimed at
clear accounts of the underlying concepts and approaches. For concreteness, I
nevertheless included many technical details. I am a co-founder of Oberon
microsystems, Inc., Zurich (founded in 1993), one of the first companies to
focus fully on component software. In addition to carefully introducing and
comparing the main players, I frequently drew on Oberon microsystems’ prod-
ucts for leading-edge examples and comparison. These include the program-
ming language Component Pascal, the BlackBox component framework and
builder, and the component-oriented real-time operating system Portos with its
development system Denia. The choice of these examples clearly reflects my
involvement in their development, as well as my active use of several of these
tools in university courses. Despite this personal bias, I aimed at a fair position-
ing of all the approaches I covered.

This book in its present form would not have been possible without the help
of many who were willing to read early drafts and supported me with their scruti-
ny and richness of comments and ideas. In particular, I would like to thank Cuno
Pfister, who reviewed the entire draft, some parts in several revisions, and provid-
ed numerous comments and suggestions. Daniel Duffy, Erich Gamma, Robert
Griesemer, Stephan Murer, Tobias Murer, Wolfgang Pree, and Paul Roe also
commented on the entire draft. Dominik Gruntz, Wolfgang Weck, and Alan Wills
provided deep and important comments on selected chapters. Marc Brandis, Bert
Fitié, John Gough, and Martin Odersky provided further important comments.
Remaining mistakes and oversights are of course mine.

Clemens Szyperski
Brisbane, June 1997

<20 -

About the author

Clemens Szyperski joined Microsoft Research at its Redmond, Washington,
facility in 1999 to continue his work on component software. He is currently
also an Adjunct Professor of the Faculty of Information Technology at the
Queensland University of Technology (QUT), Brisbane, Australia, where he
was previously an Associate Professor. He joined the faculty in 1994 and
received tenure in 1997. From 1995 to 1999 he has been director of the
Programming Languages and Systems Research Centre at QUT.

From 1992 to 1993 he held a Postdoctoral Fellowship from the
International Computer Science Institute (ICSI) at the University of California
at Berkeley. At ICSI he worked in the groups of Professor Jerome Feldman
(Sather language) and Professor Domenico Ferrari (Tenet communication suite
with guaranteed Quality of Service).

In 1992, Clemens received his PhD in Computer Science from the Swiss
Federal Institute of Technology (ETH), Zurich, Switzerland, where he designed
and implemented the extensible operating system Ethos under the supervision of
Professor Niklaus Wirth and Professor Hanspeter Mssenbock. In 1987, he
received a degree in Electrical Engineering/Computer Engineering from the
Aachen University of Technology (RWTH), Germany. Ever since joining ETH in
1987, his work has been heavily influenced by the work of Professor Wirth and
Professor Jiirg Gutknecht on the Oberon language and system.

In 1993, he co-founded Oberon microsystems, Inc., developer of BlackBox
Component Builder, first marketed in 1994 and one of the first development
environments and component frameworks designed specifically for component-
oriented programming projects. In 1997, Oberon microsystems released the
new component-oriented programming language Component Pascal. He was a
key contributor to both BlackBox and Component Pascal. In 2000, Professor
John Gough, Dean of Information Technology at QUT, ported Component
Pascal to the Microsoft NET common language runtime.

In 1999, Oberon microsystems spun out a new company, esmertec, inc., that
took the hard realtime operating system then called Portos and turned it into JBed,
an industry-leading hard realtime operating system for Java in embedded systems.

.21 -

Clemens has been a consultant to major international corporations. He
served as an assessor and reviewer for Australian, Canadian, Irish, and US fed-
eral funding agencies and for learned journals across the globe. He served as a
member of program and organizing committees of numerous events, including
ECOOP, ICSE, and OOPSLA conferences. He has published numerous papers
and articles, several books, and frequently presents at international events.

e22 +

