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PREFACE

Group theory is one of the great achievements of 19th century mathematics. It
emerged as a unifying idea drawing on four different sources: number theory, the
theory of equations, geometry, and crystallography. The early motivation from
number theory stemmed from the work of Euler, Legendre and Gauss on power
residues. In the theory of equations, the study of various permutation groups became
increasingly important through the work of Lagrange, Ruffini, Gauss, Abel, Cauchy,
and especially Galois. The discovery of new types of geometries — including
non-Euclidean, affine, projective etc. —led, eventually, to the famous Erlangen
program of Klein, which proposed that the true study of any gecometry lies in an
analysis of its group of motions. In crystallography, the possible symmetries of the
internal structure of a crystal were enumerated long before there was any possibility
of its physical determination (by X-ray analysis).

The definition of an abstract group was proposed by Cayley in two remarkable
papers in 1854, reflecting perhaps some influence of Boole (for abstract formulation)
and Hamilton’s quaternions (for the existence of algebras with noncommutative
multiplication). This definition was not immediately appreciated by the mathematical
community. In 1870, Kronecker (independently of Cayley) introduced the axioms for
an abstract commutative group. When Cayley reiterated his definition in 1878, the
reception was much warmer. In the period from 1870 to 1900, enormous progress
was made in group theory. For example, the idea of a continuous group was introduced
and studied by Lie; this led to a wealth of applications to geometry and differential
equations, culminating in the classification by Killing and Cartan of the simple finite
dimensional Lie groups. The theory of finite groups was greatly advanced through
the work of Jordan, Holder and Burnside.

The theory of group representations was created by Frobenius, Schur and Burnside
in the last decade of the 19th century, although some of the ideas were anticipated
in Jordan’s monumental Traité des substitutions of 1870. Their theory for finite groups
was extended to compact groups and brought into fruitful contact with Lie theory
in a series of fundamental papers by Hermann Weyl in the 1920s. Almost all the key
mathematical ideas presented in this book were developed during this period; thus,
some 70 to 120 years ago. (The one principal exception is our description of Wigner’s
seminal paper, extending Frobenius’s method to obtain the representations of the
Poincaré group. This paper appeared around 50 years ago.) Of course, there has been
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huge progress in the last half century. I have tried to present this classical material
from a geometric viewpoint, which will, hopefully, help the reader to enter the realm
of the more recent advances.

It is more difficult to trace the early sources of the applications of group theory to
physics. Symmetry considerations entered into the solutions of physical problems at
the very beginning of mathematical physics. Mathematical crystallography, a major
success of 19th century physics, is essentially group theoretical, but it had developed
before the abstract language of group theory had been accepted. We explain some
of the more elementary ideas of this subject in Chapter 1, and go into somewhat
more detail in Appendix A. The spirit of Klein’s Erlangen program pervades
Poincaré’s La Science et I'Hypothese, and other philosophical writings, and through
them influenced the development of special relativity. The culmination of this group
theoretical approach to relativity is Wigner’s paper mentioned above, where the
physical characteristics, mass and spin, arise as parameters in the description of
irreducible representations. One of the goals of our method of presentation is to
reach this central result.

The explicit recognition of the importance of group representation theory in physics
started very soon after the discovery of quantum mechanics, with the path-breaking
work of Weyl, Wigner, and others. In fact, Weyl's classic book of 1928, Gruppentheorie
und Quantenmechanik, makes instructive and inspiring reading even today. (In his
book, Weyl adopts the pedagogic strategy of segregating the mathematics and the
physics into separate chapters. There is much to be said for this strategy, especially
from the point of view of logical coherence. But it had the unintended effect that
physicists and mathematicians would read alternate chapters. I have taken the risk
of going to the opposite extreme here, trying to use the physics to motivate the
mathematics and vice versa, mixing the two.) The uses of group theory in quantum
mechanics extended from chemistry and spectroscopy in the 1920s and 1930s, to
nuclear and particle physics in the 1930s and 1940s, and then to high energy physics
and the discovery of the theory of colored quarks in the 1960s and 1970s. It is this
story of the interweaving of mathematics and physics that I try to tell in this book.

It should not be supposed that there was a warm reception in the physics community
to the introduction of group theoretical methods. In fact, the contrary was true. To get
a feeling for a typical early reaction, let me quote at length from the autobiography
of John Slater, who was a leading American physicist and head of the MIT Physics
Department for many years. The following quotes are taken from pages 60-2 of his
autobiography:

It was at this point that Wigner, Hund, Heitler, and Weyl entered the
picture with their “Gruppenpest™ the pest of the group theory... The
authors of the “Gruppenpest” wrote papers which were incomprehensible
to those like me who had not studied group theory, in which they
applied these theoretical results to the study of the many electron
problem. The practical consequences appeared to be negligible, but
everyone felt that to be in the mainstream one had to learn about it.
Yet there were no good texts from which one could learn group theory.
It was a frustrating experience, worthy of the name of a pest.
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I had what I can only describe as a feeling of outrage at the turn
which the subject had taken....

As soon as this [Slater’s] paper became known, it was obvious
that a great many other physicists were as disgusted as 1 had been
with the group-theoretical approach to the problem. As I heard later,
there were remarks made such as “Slater has slain the ‘Gruppenpest’”.
1 believe that no other piece of work 1 have done was so universally
popular.

Outrage, disgust, the characterization of group theory as a plague or as a dragon
to be slain — this is not an atypical physicist’s reaction in the 1930s-50s to the
use of group theory in physics. It is, however, amazing to consider that this auto-
biography was published in 1975, after the major triumphs of group theory in
elementary particle physics.

When I was a student in the early 1950s, the basic facts of abstract group
theory were part of the algebra course, but the theory of group representations
was not included in the standard mathematics curriculum. My introduction to rep-
resentation theory and its physical applications was at the hands of Prof. George
W. Mackey. He gave a wonderful and justly famous course of lectures at the University
of Chicago in the summer of 1955, where I visited as a special summer student. From
the time that I joined the Harvard faculty in 1959, George has given me access to
his voluminous handwritten notes on mathematical physics, and has, on occasion,
written me long letters explaining various points. Much of his influence can be felt
in the first half of this book.

In 1962, I was invited by Prof. Yuval Ne'eman to give a series of lectures on
the topology of Lie groups at his seminar, then held at Nahal Soreq. This was
after the prediction of the existence of the Q™ particle (by Gell-Mann and by Ne’eman
on the basis of SU(3) symmetry in 1961), but before its momentous discovery at
Brookhaven National Laboratory in 1964. This series of lectures developed into a
lifelong collaboration. Much of my own work in physics has been in collaboration
with Prof. Ne’eman, or an outgrowth of the seminars we have held together over the
past 32 years.

Let me now describe the contents. The key idea in Chapter 1 is an action of a
group on a set, with the concomitant notions of fixed point sets and stabilizer
subgroups. We use these notions to clarify the notion of form and habit in a crystal,
and to classify the finite subgroups of O(3). Along the way we show that SI(2,C) is
the double cover of the connected component of the Lorentz group, and hence that
SU(2) is a double cover of the three-dimensional rotation group, facts that are central
to the understanding of the concept of spin. We conclude with a discussion of
icosahedral symmetry in conjunction with the newly discovered carbon molecules,
the buckyballs.

Chapter 2 presents the basic facts in the representation theory of finite groups.
The central unifying theme is that of character formulas as fixed point formulas,
both in this chapter and the next. Of course, we present these formulas in the purely
finite context. But they represent the finite prototypes of the more powerful
fixed point formulas in modern analysis, such as the Atiyah—Bott theorem. A partial
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transition to these formulas is given in Appendix G using differential geometric
methods and generalized functions. At the end of the chapter we make a first pass
at the representation theory of the symmetric groups. I return to this topic in Chapter 5
and in Appendix C.

Chapter 3 discusses induced representations from the point of view of vector
bundles. The motivating example is the study of the vibrational spectrum of a
molecule, both in classical and quantum mechanics. The main physical idea is
the use of Schur’s lemma to determine the number of possible vibrational modes
and also to derive the quantum mechanical selection rules that determine which
transitions ire forbidden. In this latter connection, one needs to use tensor products
and what are known in the physics literature as ‘tensor operators’. I give the Frobenius
theory of the representations of a semidirect product, and describe Wigner’s use of
this method to obtain the irreducible representations of the symmetry group of special
relativity. The chapter includes a careful mathematical discussion of the question of
the discrete symmetries of space time such as parity and time reversal. The chapter
concludes with the Mackey theorems on induced representations and Mackey’s
approach to exchange forces.

Chapter 4 makes the transition from finite to compact groups. The Peter—Weyl
theorem is stated, but its proof is deferred to Appendix E. The irreducible repre-
sentations of SU(2) and SO(3) are derived, with the concomitant theory of spherical
harmonics. Applications include a discussion of the hydrogen spectrum and the role
of the representation theory of the rotation group in the periodic table and the magic
numbers of nuclear physics. I discuss the role of the Clebsch~Gordan coefficients in
isospin, in particular in pion-nucleon scattering experiments, and show how the
Klein—-Gordan equation, the Dirac equation, Weyl’s neutrino equation and Maxwell’s
equation are related to the appropriate irreducible representations of the Poincaré
group in Wigner’s list. A brief introduction to Lie algebra methods is included.

Chapter 5 is devoted to the Schur—Wey! duality between representations of the
symmetric groups and the general linear groups. The representations of the special
unitary groups are derived from this duality in the standard fashion. The results are
applied to the study of quarks. A typical application is the derivation of the nucleon
magnetic moments from the quark theory. The physics in this chapter represents
discoveries up to the early 1970s. I do not include a discussion of electroweak
unification, but end, somewhat out of context, with a discussion of the differential
geometry of the Higgs mechanism. I have not included any of the material on grand
unified or supersymmetric models. My feeling is that no one of these models has won
the day, and that the fundamental problems, such as confinement, the mass spectrum,
divergences, the source of the Higgs field, etc., must be regarded as open questions.
In the meantime, the attention of much of the theoretical physics community has
turned elsewhere.

There are seven appendices. Appendix A takes the study of mathematical crys-
tallography a bit further than does the treatment in Chapter 1. It does not go through
the detailed classification of the crystallographic groups, but does give a description
of how this classification proceeds. In particular, it gives a precise definition of the
Bravais lattices and their classification. My feeling is that this material is of general
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cultural importance (and is, of course, central to solid state physics) but too technical
to be included in the introductory first chapter.

Appendix B provides the necessary background on tensor products, as this material
is not always included in the standard linear algebra course.

Appendix C provides proofs of some of the more technical aspects of the repre-
sentation theory of the symmetric group. I chose to follow the beautiful 1977 paper
of James. This method illustrates the power of the Gel'fand approach to
integral geometry. Alternative approaches to this theory, such as via Hopf algebras
or combinatorics, have their own individual merits, and are available elsewhere.

Appendix D gives the proof {following Bargmann) of Wigner’s theorem on the
symmetries of quantum logic. This theorem lies at the heart of the application
of group theory to quantum mechanics. It is the quantum mechanical version of
the fundamental theorem of projective geometry. As it is not usually included in
the standard texts, I thought it important to include it here.

Appendix E gives the proofs of the basic facts about the representations of compact
groups. The treatment is concise and standard, and practically no hard theorems in
functional analysis are used. Nevertheless, I felt that it would be too much of a
distraction from the main storyline to include this material in the main
text.

Appendix F includes no mathematics at all. It is devoted to a history of 19th
century spectroscopy. Many quantum mechanics texts start with a little of the
prehistory of the subject, usually beginning with the Bohr atom. But it took a
century of research to reach Bohr’s epoch making paper, and during most of that
period the existence of atoms was in dispute, not to say the existence of subatomic
constituents. My feeling is that we are in a similar state today with regards to quarks
and their possible constituent components. So a look back at how the science of
spectroscopy actually progressed might be a source of comfort and amusement during
our present period of groping towards an understanding of the deeper components
of matter. My guides to the original literature were early Encyclopedia Britannica
articles, all written by key players (that is how it was in those days) and the excellent
unpublished Ph.D. thesis by Clifford Lawrence Meier entitled ‘The role of
spectroscopy in the acceptance of an internally structured atom 1860-1920°, submitted
to the University of Wisconsin in 1964. Of course, I bear the responsibility for the
judgment calls in the shaping of the story.

Appendix G is taken from my joint book Geometric Asymptotics, written with
Victor Guillemin. I try to give a taste of how the fixed point theorems given in
the text in the finitistic setting can be formulated and proved in the framework
of differential topology.

A word about prerequisites. I have tried to make the demands on the mathematical
background of the reader as modest as possible. A course in multivariate calculus
and linear algebra, together with an elementary physics course, should suffice.
Especially if the reader will forgive my occasional lapses into more advanced material.

v'abwin
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2 Basic definitions and examples

The identity element is the identity matrix

(%)

and the inverse of each element is its matrix inverse; for example,

a_l= 0 _1 _1= 0 1 =C
1 0 -1 0 )

(c) Let C, denote the group of rotational symmetries of the square, as follows:

e = identity (rotation through 0)

a = counterclockwise rotation through =/2

b = counterclockwise rotation through =

¢ = counterclockwise rotation through 37/2 (clockwise rotation
through n/2).

Now the group operation is composition of transformations. Clearly the ‘multiplic-
ation table’ is the same as in the preceding two examples; we have considered three
different realizations of the same abstract group, the so-called ‘cyclic group of four
elements’. It is a simple example of a finite group.

Example 2
We turn now to an example of a group which has an infinite number of elements. Let
SL(2,C)denote the set of 2 x 2 matrices of determinant 1 with complex entries. Thus, an

element A of SL(2,C) is given as
a b
A=
(o)

where a,b,c and d are complex numbers satisflying
ad—bc=1.

Muitiplication is the ordinary multiplication of matrices. Since the determinant of the
product of two matrices is the product of their determinants, we see that if 4 and B are
elements of SL(2, C), then so is their product AB. If A is an element of SL(2, C), so that
det A = 1, then A is invertible and det A~ ! = 1, so that 4~ ! exists and lies in SL(2, C).
The identity element of the group is the identity matrix, i.e.

()

The associative law holds for matrix multiplication and thus SL(2, C) is indeed a group.
Notice that the commutative law does not hold in general for this group.

More generally, we can consider n x n matrices with either real or complex entries.
The collection of real invertible n x n matrices is denoted by GL(n, R). (Notice that here
the condition of invertibility has to be added as a supplemental hypothesis. Not all
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2 x 2 or n x n matrices are invertible, but those that are invertible form a group.) The
group GL(n,R) is called the real general linear group in n variables. We can also
consider the group SL{n, R) consisting of the n x n real matrices of determinant 1. It is
called the real special linear group in n variables. Similarly, we can consider the group
GL(n,C) of all invertible complex n x n matrices or the group SL(n,C) of all n x n
complex matrices of determinant 1.

Example 3

As a third example of a group we can consider the group, 0O(3), of all orthogonal
transformations in Euclidean three-dimensional space. This is the group of all linear
transformations of three-dimensional space which preserve the Euclidean distance;
that is, those transformations, 4, which satisfy

IAvl=1vI

for all vectors v in ordinary three-dimensional space. If we choose an orthonormal basis
for three-dimensional space so that every A becomes identified with a matrix, then 4 is
an orthogonal transformation if and only if

AA'=e,

where e denotes the identity matrix in three dimensions. Notice that this equation is the
same as A'= A~ !. We see immediately that the product of any two orthogonal
transformations is again orthogonal and that the inverse of any orthogonal transform-
ation exists and is orthogonal. Thus, the collection of all orthogonal transformations
doesindeed form a group. Since det 4 = det 4!, it follows from AA4' = e that (det 4)* = 1.
Thus, for any orthogonal transformation 4 we have det 4 = +1. The collection of
those matrices which are orthogonal, and which satisfy the further condition that det
A= +1, forms a subcollection of O(3), which in itself is a group and which we will
denote by SO(3). We say that SO(3) is a subgroup of 0(3). SO(3) is called the special
orthogonal group in three variables. (Similarly, SL(n, C) is a subgroup of GL(n, C), and
SL(n, R} is a subgroup of GL(n, R).) More generally, if we put the standard Euclidean
scalar product on the n-dimensional space R", we can consider the orthogonal group
O(n) of all orthogonal n x n matrices and the corresponding subgroup SO(n) of those
orthogonal matrices with determinant 1.

Example 4
Let C" denote the n-dimensional complex vector space of all complex n-tuples with its
standard Hermitian scalar product, so that

(Z,W) =z, W+ - +2z,W,,
where '

Z w
z=| : and w=
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Table 1.
1 -1
1 -1
-1 ! -1 1
Table 2.
I o o?
1 1 w o
1) o w |1
W'l w1l w

A complex matrix A is unitary if
(Az, Aw) = (z,w)

for all zand w in C". If we denote A (the complex conjugate transpose of A) by A*, we
may say that A is unitary only if AA* =e. The product of two unitary matrices is
unitary, and the inverse of a unitary matrix is unitary; so the collection of unitary n x n
matrices forms a group which we denote by U(n). Since det 4* =det A, we see that
[det A| =1 for A in U(n). The subgroup of U(n) consisting of those matrices which in
addition satisfy det 4 =1 is denoted by SU(n).

Thus, for example, the group SU(2) consists of all 2 x 2 matrices of the form

b
( a ) where |al®+|b>=1.
—b a

Example 5
We can generalize Examples I(a), (b) and (¢) by replacing the number 4 by any positive
integer. For instance, we can consider the group C, consisting of two elements with the
‘multiplication table’ as in Table 1, which is isomorphic to the additive group of the’
integers modulo 2. Similarly, we can think of the three-element group, C;, with
clements 1, w, w? where w = exp 2zi/3 which obey the ‘multiplication table’ shown in
Table 2. ‘

The group C; can be thought of as the additive group of the integers modulo 3, or as
the group of all rotations in the plane which preserve an equilateral triangle centered at
the origin. Thus, w represents rotation through 2n/3 = 120°.

« We have already considered the group C, of all rotations preserving a square. It
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3 3 3 2
‘ (12) i i i j (123) i j
D — —_—
1 i 2 2 1 1 2 3 !
Fig. 1.1

contains four elements, consisting of the identity, rotation through /2, rotation
through =, and rotation through 3n/2. We can now recognize that C, is a subgroup of
S0(2), the group of all rotations in the plane. More generally, we can consider C, as the
group of all rotations which preserve a regular polygon with n sides. It will consist of the
identity and all rotations through angles of the form 2nk/n.

Example 6

Let us go back to the equilateral triangle. We can consider the group of all symmetries
of the triangle, not only the rotations. That is, we can allow reflection about
perpendicular bisectors as well. This group has six elements; we will denote it by S;.
Notice that we can find some element in S, which has the effect of making any desired
permutation of the vertices of the triangle. Let us denote the vertices of the triangle by
1,2 and 3 (Fig. 1.1). Suppose, for example, that (12) denotes the permutation which
interchanges the vertices | and 2 but leaves a third vertex, 3, fixed. This permutation can
be achieved by a reflection about the perpendicular bisector of the edge joining 1 to 2.

Similarly, let (123) denote the permutation that sends 1 into 2, 2 into 3, and 3 into 1.
This can be achieved by rotating the triangle through 120°. The permutation (132),
which sends 1 into 3, 3 into 2, and 2 into 1, is achieved by rotating the triangle through
240°. From this we see that the group of symmetries of an equilateral triangle is the
same as the group of all permutations on three symbols.

Suppose we consider four symbols 1, 2, 3, 4, instead of three. Let s be a one-to-one
map of this four-element set onto itself. Thus, sis a permutation of this four-element set.
There are four possibilities for 5(1): it can be any of the numbers 1, 2, 3,4. Once we know
what s(1) is, then there are three remaining possibilities for s(2), then two remaining
possibilities for s(3). Finally, s(4) will be completely determined by being the last
remaining number. Thus, there are 4-3-2' 1 = 4! = 24 permutations on four letters. The
group S, is the group of all these permutations. Similarly, we define the group S, to be
the group of all permutations; that is, all one-to-one transformations on a set with n
clements.

Example 7
As a final example, we consider the group of all symmetries of the square, denoted by
D,. D, contains eight elements: four rotations, together with four reflections — the
reflections about the two diagonals, and the reflections about the two perpendicular
bisectors (see Fig. 1.2).

Each element of D, permutes the vertices 1, 2, 3, 4 of the square. Thus, we may regard
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4 3/ 2 3 4

! 3 3 4
{
7 l
|
|
f

s Q8 (12)(34

—_—

-
| 2 2 1
Fig. 1.2

D, as asubgroup of §,, but not every element of §, (which has 24 elements all together)
lies in D,, which has only eight elements. Similarly, the group D,, the group of
symmetries of the regular polygon with n sides, is a subgroup of the group S, of
permutations of n symbols. The reader should check that D, contains 2n elements.

1.2 Homomorphisms: the relation between SL(2,C) and the Lorentz
group
Let G, and G, be groups. Let ¢ be a map from G, to G,. We say that ¢ is a
homomorphism if
¢(ab) = Pp(a)p(b) for all a and b in G,.

The notion of homomorphism is central to the study of groups and so we give some
examples. Take G, = Z to be the integers and G, = C,. Define the map ¢ by

olm) = (~ 17"

Recall that group ‘multiplication’ is ordinary addition in Z so that the condition that ¢
be a homomorphism reduces to the assertion that

¢la + b) = ¢(a)g(b),
i.e that

(=)= (=11
which is clearly true. More generally, we can define a homomorphism from Z to C, by
¢la) = exp2nia/k = w°, where w equals exp 2ni/k.

This generalizes the construction of Example 1 of the preceding section. Basically, what
the homomorphism ¢ is telling us is that we can regard multiplication in C, as ‘addition
modulo k’ in the integers.

We now want to describe another homomorphism which has many important
physical applications and which will recur frequently in the rest of this book. For this
we need to introduce still another group, the Lorentz group. Let M denote the four-
dimensional space M = R*, with the ‘Lorentz metric’

x||?=x3—x}—x2-~x3, wherex=



