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Preface

Research, development, and design in bioengineering, biomedical engineering,
biophysics, physiology, and related fields rely increasingly on mathematical mod-
eling and computational simulation of biological systems. Simulation is required to
analyze data, design experiments, develop new technology, and simply to attempt
to understand the complexity inherent in biological systems.

This book focuses on practical implementation of techniques to study real bio-
logical systems. Indeed, whenever possible, specific applications are developed,
starting with a study of the basic operation of the underlying biological, biochem-
ical, or physiological system and, critically, the available data. It is hoped that
this data-rich exposition will yield a practical text for engineering students and
other readers interested primarily in earthy real-world applications such as ana-
lyzing data, estimating parameter values, etc. Thus for the examples developed
here, important details of underlying biological systems are described along with a
complete step-by-step development of model assumptions, the resulting equations,
and (when necessary) computer code. As a result, readers have the opportunity, by
working through the examples, to become truly proficient in biosimulation.

In this spirit of soup-to-nuts practicality, the book is organized around biological
and engineering application areas rather than based on mathematical and compu-
tational techniques. Where specific mathematical or computational techniques can
be conveniently and effective separated from the exposition, they have been and
can be found in the Appendices. Computer codes implemented in MATLAB®
(The MathWorks, Natick, MA, USA) for all of the examples in the text can be
found online at the URL http://www.cambridge.org/biosim.

I am particularly grateful to a number of individuals who provided critical
feedback on the text, including Edmund Crampin, Peter Hunter, Muriel Mescam,
Gary Raymond, Nic Smith, Matt Thompson, Kalyan Vinnakota, and Fan Wu.
Andy Salmon graciously provided the data from his experiments presented in
Section 2.2.2. Tom O’Hara provided some guidance on the model analyzed in
Section 8.3. Jim Bassingthwaighte’s guidance and advice over many years, as well
as specific criticism of the text, are gratefully acknowledged.

Finally, T want to give special thanks to my colleagues Henry and Nicholas
Beard for helping with the experiments described in Chapter 1.



Extracts

“Allis in flux.”

Heraclitus (540480 BCE)

“This application of mathematics to natural phenomena is the aim of all science, because
the expression of the laws of phenomena should always be mathematical.”

Claude Bernard, Introduction a I’étude de la médecine expérimentale /865 Flammarion, Paris
(English translation from Noble, Exp. Physiol. 93: 16-26, 2008)

“Of physiology from top to toe I sing.”
Walt Whitman, Leaves of Grass, /883

“The human body is a chemical and physical problem, and these sciences must advance
before we can conquer disease.”

Henry A. Rowland, The Highest Aims of the Physicist, Address to the American
Physical Society, 1899, published in Science 10: 825-833, 1899

“We are seeing the cells of plants and animals more and more clearly as chemical
factories, where the various products are manufactured in separate workshops. The
enzymes act as the overseers. Our acquaintance with these most important agents of
living things is constantly increasing. Even though we may still be a long way from our
goal, we are approaching it step by step. Everything is justifying our hopes. We must
never, therefore, let ourselves fall into the way of thinking ‘ignorabimus’ (*We shall never
know’), but must have every confidence that the day will dawn when even those processes
of life which are still a puzzle today will cease to be inaccessible to us natural scientists.”

Eduard Buchner, Nobel Lecture, 1907

“To a physician or physiologist at the present day a man’s body is a machine, or rather
a factory full of machines, all working harmoniously together for the good of the
organism.”

Ernest N. Starling, The Linacre Lecture on the Law of the Heart, 1915,
published by Longmans, Green and Co., London, 1918

“The mathematical box is a beautiful way of wrapping up a problem, but it will not hold
the phenomena unless they have been caught in a logical box to begin with.”
John R. Platt, Strong inference. Science, 146: 347-353, 1964



“People who wish to analyze nature without using mathematics must settle for a reduced
understanding.”

Richard Feynman

“[This book] is aimed at ‘non-believers’, that is to say the 90% or so of biochemistry
students, and indeed of practicing biochemists, who place enzyme kinetics in the same
category as Latin and cold showers, character-building perhaps, but otherwise to be
forgotten as quickly as possible.”

Paul C. Engel, Enzyme Kinetics: The Steady-State Approach /977, Chapman & Hall, London

“Why make models? To think (and calculate) logically about what components and
interactions are important in a complex system.”
James E. Bailey, Mathematical modeling and analysis in biochemical engineering: past

accomplishments and future opportunities. Biotechnol. Prog., 14: p. 820, 1998

“Without data, there is nothing to model; and without models, there is no source of deep
predictive understanding.”

James B. Bassingthwaighte, The Physiome Project: The macroethics of engineering

toward health. The Bridge, 32: 24-29, 2002

“Over the last half century, we have proceeded by breaking living systems down into
their smallest components, the individual genes and molecules. Humpty Dumpty has
been smashed into billions of fragments ... Can we put Humpty Dumpty back together
again?”

Denis Noble, The Music of Life: Biology beyond the Genome. 2006, Oxford, New York
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1.1

Introduction to simulation of
biological systems

Overview

This chapter is built around analyzing a real data set obtained from a real biological
system to illustrate several complementary approaches to simulation and analysis.
The particular system studied (a home aquarium) is a well-mixed chemical reactor.
Or, more accurately, the system studied is treated as a well-mixed chemical reactor,
a basic modeling paradigm that will appear again and again in this book.

Here, we look at this single physical system from several different perspectives
(that is, under different sets of underlying modeling assumptions) with the aim
of motivating the reader to undertake the study of the rest of this book. The
aim is not to overwhelm the reader with mathematical details that can be found
in later chapters. Therefore let us clearly state at the outset: it is not expected
or required that the reader follow every detail of the examples illustrated here.
Instead, we invite the reader to focus on the basic assumptions underlying the
methods applied, and to compare and contrast the results that are obtained based
on these different approaches. Proceeding this way, it is hoped that the reader may
gain an appreciation of the breath of the field. Furthermore, it is hoped that this
appreciation will continue to grow with a study of the rest of this book and beyond.

Modeling approaches

The number of different approaches to simulating biosystems behavior is perhaps
greater than the number of biological systems. The number is at least large enough
that a finite and complete list cannot be constructed. Simulation methods may
be classified according to the physical systems simulated (for example, cellular
metabolism, whole-body drug distribution, or ecological network dynamics), the
sets of assumptions used to build a simulation (for example, rapid mixing ver-
sus spatial inhomogeneity in chemical reaction systems), or the mathematical/
computational formulation of the simulation (for example, systems of ordi-
nary differential equations versus statistical inference networks for describing
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regulation of gene transcription). A glance at the table of contents reveals that
most of this book is organized by biological system or application area. (Modeling
assumptions and relevant computational techniques are introduced as necessary.)

These biological systems can (and will!) be studied by applying a variety of
sets of assumptions and associated computational methods. Doing this, we will
see that the methodology applied to a given system depends strictly on what one
thinks one knows about the system in advance, and what one wishes to discover
through computational analysis. In the following introductory example we will see
that what we can learn (for example, what variables and what parameters we can
estimate) depends on the prior knowledge built into a model, including (but not
limited to) what data are available for a given system.

An introductory example: biochemistry of a home aquarium

As our first exemplar modeling study, let us analyze the buildup and reaction of
waste materials in a home aquarium, a system that may be familiar to some readers.
Ammonia (NH3), which is toxic to fish, is excreted from fish as a waste product
and produced through decomposition of organic matter. In a well-functioning
aquarium, nitrifying bacteria in the aquarium filter oxidize ammonia to nitrite
(NO; ) and oxidize the nitrite to nitrate (NO5). Of these three nitrogen-containing
compounds, nitrate is by far the least toxic to fish.

When one sets up a new aquarium, populations of nitrifying bacteria are yet to
be established, and concentrations of toxic compounds can temporarily build up.
Figure 1.1 plots data collected by the author from his own aquarium following the
addition of fish into a previously uninhabited new tank. Here we see that ammonia
concentration tends to build up over the first week or more. Once significant
populations of bacteria that convert NH; to NO, appear, the ammonia declines
while the nitrite level increases. Nitrite concentration eventually declines as nitrate
begins to appear.'

We wish to understand how these three concentrations are related kinetically. To
simplify the notation, we introduce the definitions x; = [ammonia], x, = [nitrite],
x3 = [nitrate] for the concentration variables. As already described, the expected
sequence of reaction in this system is x;— x; — x3. In fact, that sequence is
apparent from the data illustrated in the figure. Ammonia (x;) peaks around day
10, followed by nitrite (x,) around day 13. Nitrate concentration (x3) really picks
up following the peak in nitrite, and continues to steadily increase.

' Ammonia, nitrite, and nitrate exist in aqueous solution in a number of rapidly interconverting forms. For example, at
low pH NHj is largely protonated to form the ammonium ion NH; . Here, the terms ammonia, nitrite, and nitrate are
understood to include all such rapidly converting species of these reactants.



1.2 An introductory example: biochemistry of a home aguarium

1.2.1

12 . ‘ . .
—O— Ammonia
—— Nitrite
—A— Nitrate
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— O
N
(&)}

b Time (days

A home aquarium. The plot in panel (b) shows ammonia, nitrite, and nitrate concentration versus
time in a home aquarium. Concentrations are given in units of mg of nitrogen per liter (Mg =1,

Yet in addition to the reaction sequence, is it possible to obtain additional
quantitative information from these data? To do so, let us construct a series of
simple models and see what we can find.

First model: @ nonmechanistic analysis

In the first model we would like to introduce the minimum number of assumptions
that allow us to explain the observed data. The idea is to construct a general set of
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governing differential equations for x,, x», and x3 based only on the assumption of
mass conservation. Conservation laws are a universal tool for developing models
of many systems, including practically all of the examples studied in this book.

Here we assume that the volume of the system, V, remains constant. So the rate
of change of mass of a substance, ‘“(‘,# is equal to V ‘(—5‘; In this case, the general

differential equation for concentration of a reactant is

d rate of production or rate of loss
(" . - . . ~
Vv i input measured in units | — | measured in units of (1.1)
of mass per unit time mass per unit time
or
rate of production or rate of loss
dc | input measured in units measured in units of (1.2)
dir | of mass per unit time mass per unit time | ’
per unit volume per unit volume
Applying this general form to the variables x;, x>, and x3 gives
D )= ot
= —riz
dt
D2 ralt) = ral0)
= riplt) —rasl
dt
dx;
— = (1), (1.3)
dt

where k() is the rate of ammonia (x| ) production, and rj»() and r3(2) are the rates

of conversion from ammonia to nitrite and from nitrite to nitrate, respectively. The
first equation states that the rate of change of x; is equal to the rate of production
minus the rate of degradation. Similar statements of mass conservation follow for
dx,/dt and dx;/dt. Since no processes degrading nitrate are considered, there
is no degradation term in the dxs/dt equation. Because k(t), r1»(1), and rp3(1) are
(so far) assumed to be arbitrary functions, we have (so far) not introduced any
assumptions about the rules governing the behavior of these functions. The names
and definitions of the model variables are listed in the table below.

Variable Units Description

X4 magl-! concentration of ammonia

Xo mg |~ concentration of nitrite

X3 mgl! concentration of nitrate

k mal Lday ! rate of ammonia production

Iz mg |~ day~! rate of nitrite production from ammonia

ro3 mgl ' day! rate of nitrate production from nitrite
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We call this model “nonmechanistic” because it does not invoke any biochem-
ical/biophysical mechanisms to describe the rates of conversion r2(f) and ry;(1),
or the rate of production k(7). Instead these rates are all allowed to be arbitrary
functions.

So what can we do with this simple general model? One useful thing we can
do is analyze the data using the model to estimate r2(2), r23(?), and k and test
the model assumptions. From Eq. (1.3), we have r3(t) = dx3/dt, which can be
numerically approximated using a finite difference approximation

x3(t + At) — x3(t — At)
2A1 '

Fa(t) ~ (1.4)

Here A7 is the discrete time step over which the data in Figure 1.1 are sampled.
(I took one measurement per day, so At = 1 day.) Equation (1.4) is the “central-
difference™ approximation for the derivative of x3 with respect to time.” Here we
use the notation 73 to denote the approximation (from the data) of r-3. Next, given
our approximation of r3(f), we can approximate ri>(7):

dx, xo(t + At) — xo(t — At)

al) = —— 7 ~ Iy . 1.5
12(1) o + r3(1) TAF + Fa3(1) (1.3)

=

Similarly, we can approximate k as a function of time

R 1 X At) — r— A
fy= 2 L AR T RO RE A (1.6)
dt 2Nt

Values of k(1), #12(1), and #3(¢) computed from the data in Figure 1.1 are plotted
in Figure 1.2.% From these estimated rates we learn a number of things about
this system not immediately apparent from a simple inspection of the raw data.
First, we can see that the rate of ammonia production (l:'(t)) is estimated to
be approximately constant. Moreover, this analysis provides an estimate of the
constant k, approximately 0.4 to 0.5 mg 1-! day~'. This observation is perhaps
not unexpected, because the number and size of the fish remained approximately
constant over the course of the experiment, as did the amount of food introduced
per day. Therefore we might have expected the rate of ammonia production to be
nearly constant. Second, the analysis reveals that nitrite production (71,(¢)) peaks
near day 13 while nitrate production peaks shortly after, around day 14. Towards
the end of the experiment, all of the reaction rates converge to equal approximately
0.5 mg 1! day’]. Finally, we note that the estimated rates k(t), #12(t), and F23(1)
remain positive for the duration of the experiment. This observation makes sense,
because under normal conditions neither of the nitrification reactions is expected

2 Discrete approximations of derivatives are reviewed in Section 9.1 in the Appendices.
3 Computer codes (implemented in MATLAB) for this and all of the examples in this book can be found online at the URL
http://www.cambridge.org/biosim.
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Values of k(t), F12(t), and Fos(t) estimated from Egs (1.4)-(1.6) and the data in Figure 1.1. These
rates are expressed in units of mass of nitrogen per unit volume per unit time: mg I~" day~'.

to proceed in the reverse direction. Thus the result that 71(¢) and 7»3(¢) remain
positive provides a useful check of the physical realism of the model.

To summarize, analyzing the data of Figure 1.1 using the simple model of
Eq. (1.3), which invokes no more serious assumption than conservation of mass,
provides quantitative estimates of a number of variables that are not directly
measured.

Nonmechanistic analysis with noise

The preceding analysis was applied to a relatively noise-free data set, yielding
reasonable (and smooth) numerical estimates for the derivatives in Eqs (1.4)-
(1.6). However, differentiation has the unfortunate side effect of tending to magnify
noise. And since significant measurement noise is often associated with real-world

biological signals, analyses that require the estimation of derivatives of biological

data are often seriously confounded by noise.*

4 The aquarium experiment studied here cannot be regarded as a precisely controlled study. The original data set of
Figure 1.1 was collected by the author using a simple consumer kit, with which the concentrations are estimated by visual
comparison of the fluid in a test-tube assay with a color chart, possibly introducing bias. Although dilutions and replicates
were performed as appropriate, there is a human psychological component to interpreting these assays. Furthermore,
because the nitrate assay used is relatively insensitive over the reported concentration range, data were obtained by a
combination of interpolation, assuming a constant total nitrate production rate, and colorimetric assay. Given the potential
for bias, the reader is encouraged to conduct his or her own experiments in his or her own home laboratory!
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Analysis of noisy aquarium data. In panel (a) the data of Figure 1.1 are reproduced with added
noise. The analysis of the previous section is reproduced in panel (b), with k(t), F1o(t), and Foz(t)
computed from Egs (1.4)-(1.6) applied to the noisy data from panel (a).

To illustrate this problem, and to explore some ideas of how to deal with it, we
can add some noise to our aquarium data. Figure 1.3(a) shows the same data as
those of Figure 1.1, with a relatively small amount of noise added. We can see that
the basic trends in the data remain the same, but this data set is less smooth than
the previous one.

The values of lAc(t), P12(1), and 73(t), computed from Eqs (1.4)—(1.6) for these
data are plotted in Figure 1.3(b). Here we can see the consequence of differentiating



