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Foreword

Fluid mechanics is a subject with a long history, but yet is young with regard to recent
discoveries, and has many applications which affect everyday life. Its history is a parade of
the great names of science: from the eighteenth century the Bernoullis, Euler and Lagrange;
from the nineteenth century Cauchy, Navier, Stokes, Helmholtz, Rayleigh, Reynolds and
Lamb; and from the twentieth century Couette, Prandtl, G.I. Taylor and Kolmogorov.

In the natural environment, we can now rely on the 5-day weather forecasts and tornado
warnings; early success in predicting tides is today applied to automated tsunami warn-
ings; understanding the circulation in the oceans and atmosphere is applied to pollution,
the ozone hole and climate change. In the interior of the earth, fluid mechanics is impor-
tant in mantle convection, volcanoes and their dust clouds, oil reservoirs and possible CO;
sequestration.

Fluid mechanics is central to many industries. The design of aircraft developed from
simple ideas in the early twentieth century to low-drag forms of wings with winglets at their
tips and improved body profiles by the end of the century. At the same time, jet-noise was
dramatically reduced with the introduction of wide entrance bypass fans which shield the
fast jet. Simple and complex fluids are processed in various manufacturing industries: for
glass and other materials, chemical engineering and food processing.

Recent research in fluid mechanics includes: microfluidics at the micron scale with the
possibility of multiple simultaneous tests of small biological samples; similar scales and
effects of wettability in ink-jet-printing; the ideas of convection allowing the design of
energy-efficient buildings by using natural convection; and the control of instabilities and
turbulence.

With such a wealth of ideas and applications, there is a major challenge of how to teach
the subject. Some material is best left to specialized Masters courses. But the basic core has
to be taught in a way to help students’ progress to the advanced topics, current and future.
The authors of this book have adopted in my opinion an approach and style which should
interest and educate students, preparing them for the future. I fear that some alternative
approaches fail on this: some engineering courses have an over-reliance on Computational
Fluid Dynamics, which can be unsafe in novel applications; some mathematical courses are
lost in the enormous difficulty of proving the governing equations have, or do not have,
solutions in the simplest of situations, an open Clay prize problem. The approach in this
book is grounded in experiment and reality. The chosen structure of the presentation helps
students come to deep insights into the subject.

In my opinion, the subject of fluid mechanics has benefited in the last 30 years from
the contributions of French physicists such as the authors of this book, bringing a fresh
approach to the subject along with novel experimental techniques and an appreciation of
practicalities.

John Hinch
University of Cambridge






Introduction

The place of fluid mechanics has been poorly defined in the scientific world. On the one
hand, it has a strong connection with applied mathematics, in particular in France where
the impact of such research has been extremely important from the nineteenth century
onward. In recent times, this tendency has been reinforced by significant developments of
computational science in such domains as turbulence and instabilities. On the other hand,
engineering communities deal with sophisticated technical problems regarding flows and
transfer of heat and matter, which require approximate solutions, but where some basic
understanding is often missing. A consequence of this state of affairs is that both physicists
and chemists, who are also involved in these issues, have remained on the sidelines. This was
the case in the basic training of the authors of the present book. Yet another possible reason
has been the strong polarization of physicists towards problems on the quantum scale, and
relativity, although the pioneering giants of the field (Einstein, Bohr, Heisenberg . . .) had a
good background in continuum mechanics. For a long time, physicists did not follow closely
the important developments in the field, or followed them only indirectly: for example, the
information on perfect flows and vorticity, of three of the authors of the present volume was
triggered by their experimental work on superfluid Helium. The study of hydrodynamic
instabilities was approached by analogies with phase transitions. Physical chemists dealt
with complex materials such as liquid crystals, colloids, or polymers: they had to apply
mechanics but also other approaches like scaling laws.

This schematic description of a mutual ignorance applies less and less frequently now-
adays. Over the last decades, the interaction between scientists trained in physics and in
mechanics has continued to increase through a great deal of joint research. The first edition
of Physical Hydrodynamics, which was published in English 13 years ago, is presented in a
completely renewed and expanded form and content while keeping the same physical, ped-
agogical approach. Moreover, 36 exercises have been added at the end of selected chapters
and their correction is provided at the end of the book.

Indeed, in the course of the last 30 years, physicists and chemists have approached the
subject in a manner complementary to classical mechanics. This implied the use of ex-
perimental and theoretical tools which had been developed for domains of physics such as
condensed matter, statistical physics and material science. International conferences such
as the APS-DFD or Euromech meetings led to interactions between participants with very
diverse backgrounds. A broader field of applications has also been considered, such as in
the life sciences, in addition to more classical engineering ones. But this also implies less
formal ways of reasoning, such as for example, scaling approaches making extensive use of
the classical tools of experimental physics.

The present book is based on our experience as experimental physicists. Actually, the
word “hydrodynamics” is somewhat misleading and we use it in the sense that was given
in Hydrodynamica by Daniel Bernoulli. We deal here not only with liquids but also with
gas flows such that compressibility effects cannot be ignored. We have therefore excluded
such problems as high-velocity gas flows, which involve a coupling between the equation
of motion and thermodynamics. One specificity of our approach is to attempt to tie in,
as often as possible, the macroscopic behavior of fluids to their microscopic properties.
We also rely, as often as is reasonable, on order of magnitude arguments rather than just
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on formal derivations. Thus, in introducing dimensionless numbers, as is customary in the
field, we stress the fact they are ratios (in Greek, avadoyie, analogy, which means ratio)
of similar quantities such as characteristic lengths, times, energies, and so on, rather than
relying on algebraic manipulations based on dimensional analysis. This was the approach of
Osborne Reynolds in introducing the dimensionless quantity which bears his name. Rather
than “cookbook recipes”, we look for a deeper physical understanding of the mechanisms
at play in a field extremely rich in experimental observations.

The book can be roughly divided into three parts:

The first five chapters (1 to 5) are devoted to the basic and classical elements of fluid
mechanics. In the first chapter, we give a schematic description typical of elementary
out-of-equilibrium statistical physics on non-equilibrium transport processes and of the
spectroscopic tools used for these studies. Diffusive versus convective processes are dis-
cussed in the following chapter. Kinematics and dynamics of flows as well as the use of
conservation laws provide the classical foundation of the book.

Different regimes of flows are analyzed in the following four chapters (6 to 9): potential
flows, flows governed by vorticity (with an extension to rotating flows as encountered in
geostrophic conditions); quasi-parallel flows and low Reynolds numbers flows.

The last chapters (10 to 12) are devoted to more detailed and complex phenomena which
simultaneously involve different mechanisms: boundary-layer flows lead to many applica-
tions as, in particular, those found in chemical engineering. Unstable flows are presented
in a simple way emphasizing the coupling between the different mechanisms involved and,
finally, the chapter on turbulent flows in which mathematical developments have been kept
to a minimum.

As stated above, our physicists’ approach was initiated by our research work on various
themes on fluid mechanics not often dealt with by specialists of classical mechanics (such
as, sound in superfluid He*, instabilities in liquid crystals, percolation in porous media).
Our basic training made use of references such as Landau’s Fluid Mechanics. However,
over the course of time, we benefited from other communities and, in particular, the British
school of G.I. Taylor (the exquisite four volumes of his complete works) and direct con-
tacts with G.K. Batchelor who provided us an access to a pragmatic approach to fluids
where ingenious experimental discoveries are accompanied with rigorous reasoning and
more mathematical treatment well connected with experimental reality. The teaching of
John Hinch, who has accepted to write a “Foreword” to this book, and Keith Moffatt, who
introduced fluid mechanics to a number of us in a famous summer institute in Les Houches,
in 1973, have provided us with a number of fine tools suitable both for our research as well
as for undergraduate and graduate teaching at the origin of this book. In the USA, connec-
tions with A. Acrivos, J. Brady, G. Homsy, J. Koplik, L. Mahadevan, H. Stone and many
other colleagues have broadened our vision of the field. Our initial curiosity was stirred up
by several films of the NCFMF (National Committee for Fluid Mechanics Films), and by
the Album of Fluid Motion of M. Van Dyke (which inspired our “Ce que disent les fluides”
in French). More recently, the Multimedia Fluid Mechanics project directed by G. Homsy
has broadened the range of documents available for teaching purposes. Our English speak-
ing colleagues which have used the recent French edition of the book in their classes have
encouraged us to produce this new, second edition of Physical Hydrodynamics.

Above all, it is in the everyday life of class and laboratory activities that the book
has been constructed. The research and teaching of P. Bergé, B. Castaing, C. Clanet,
Y. Couder, M. Farge, M. Fermigier, P. Gondret, E. Guazzelli, J.E Joanny, E Moisy,
B. Perrin, Y. Pomeau, M. Rabaud, D. Salin, B. Semin, J.E. Wesfreid and many others are
at the origin of elements of this book. We wish to thank particularly several colleagues who
have directly contributed to specific parts of this book: C. Allain (non-Newtonian flows),



A. Ambari (polarogaphy), A.M. Cazabat (dynamics of wetting), M. Champion (flames),
C. Clanet and D. Quéré (capillarity), P. Gondret (exercises), F. Moisy (text and exercises
on turbulence and rotating flows), C. Nore (MHD), N. Ribe (free liquid jets) and J. Teixeira
(spectroscopy of fluids).

The translation, as well as the necessary adjustment to the English scientific form, has
been made essentially by C.D. Mitescu. We express our gratitude to Dr. Natalie Reinert,
DVM, who has edited the book during the last year. She has also contributed greatly to the
style of the translation. Our gratitude goes to Mrs Nicole Mitescu, wife of C.D. Mitescu
and mother of Nathalie for proof reading the book. We thank her as well as Marie Yvonne,
Daniele and Christine for their patience during the preparation of this new edition.

E. Guyon, ]J.P. Hulin, L. Petit, C.D. Mitescu
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