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Introduction

The aim of this book is to facilitate interaction among engineering, finance and
the insurance sectors as there are a lot of common models and solution methods for
solving real-life problems in these three fields.

In the 19th Century, many problems in physics, for example heat diffusion, were
theoretically solved using partial differential equations (PDEs). This led to new
problems in mathematical analysis and later in function analysis; in particular,
concerning the existence and unicity for the solutions of such PDE equations giving
initial conditions of a Cauchy type that is the knowledge of the unknown function on
a regular curve of the adequate Euclidean space.

Unfortunately, such PDEs have, in general, no explicit solution and so the
problem of numerical treatment was posed. Although mathematicians could, indeed,
formulate algorithms to give a good numerical approximation of the solution, it was
nevertheless difficult to use such algorithms in practice, and it is only in the late
20th Century that this became possible with, of course, the building of more and
more powerful computers together with elaborate software for numerical analysis.

In the 1970s, stochastic finance came into existence with the work of Black,
Scholes and Merton, just after the fundamental results of Markowitz and Sharpe.

The main result is the celebrated Black and Scholes formula giving the value of a
European call option with a closed formula. It can only be obtained by the authors
with a laborious analytical transformation of their PDE arriving at the resolution of a
well-known equation in physics called the diffusion equation.

Without this result, it is probable that the Black and Scholes formula would not
exist.
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So with partial differential equations as the vehicle, the interaction among
engineering, physics and finance plays a fundamental role, and this book will show
that this role is of major importance to get new results in finance and that, moreover,
it could also be applied in the other spheres.

In Chapters 1-3, basic diffusion phenomena and models, probabilistic models of
diffusion processes and the related PDEs including the heat equation are presented
together with some fundamental results in stochastic calculus such as 1t6’s and
Feynman—Kac’s formulas.

Chapter 4 presents fundamental problems in finance concerning the stochastic
evolution of stock prices and interest rates, while Chapter 5 shows how PDEs are
necessary to price financial products, such as options and zero-coupon bonds, and
how the interaction with PDE in physics works. It also shows that some important
methods in finance, such as the use of the risk-neutral measure with Girsanov’s
theorem, are nothing other than the use of Green’s function that is presented in
Chapter 3.

Chapter 6 thoroughly analyzes stochastic finance with the consideration of more
sophisticated derivative products than the plain vanilla European options (exotic
options, American options, etc.). The pricing of such financial products is done with
the resolution of PDEs with the methods of physics and engineering as presented in
Chapter 3.

Chapter 7 presents some applications in stochastic insurance using hitting times
for diffusion processes such as the Merton model for credit risk and asset liability
models (ALM) to model the risk of banks and insurance companies.

Chapter 8 first describes the finite difference method and its application for
solving numerically the PDEs of Black and Scholes as presented in the preceding
chapters.

The next four chapters (Chapters 9—12) discuss some recent advanced topics
such as non-linear problems, Lévy processes, and the copula approach and semi-
Markov models in interaction with diffusion models.

This is, in particular, important for the evolution from Gaussian to non-Gaussian
stochastic finance in future years as, indeed, recent crises imply considering the case
of non-efficient and incomplete markets. In particular, this extension can be done
with jumps models, generalizing the Merton model for option pricing. We can also
use an economic-financial environmental process using semi-Markov theory. These
last processes are also useful for pricing American options with a discrete-time
model.
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The last chapter (Chapter 13) presents some simulation results as it is a fact that
for some real situations, there do not exist simple closed formulas and so simulation
is the only possibility.

Finally, the Conclusion deals with actual and future interactions among
engineering, finance and insurance as a fructuous source of developments for new
models that are more adapted to approach the complexity of our three basic fields,
thereby showing the great originality of this book.

This book is intended for a large audience of professional, research and academic
disciplines, including engineers, mathematicians, physicists, actuaries and finance
researchers with a good knowledge of probability theory.
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Chapter 1

Diffusion Phenomena and Models

The aim of this chapter is to obtain the differential diffusion equation from the
macroscopic point of view starting from a microscopic point of view. The approach
is heuristic and a rigorous analysis is found in the current literature as also suggested
in the following sections. The equation is obtained with reference to the mass
diffusion phenomena and also by analogy to heat conduction. Then the analysis is
carried out with reference to this last physical aspect. The parabolic and elliptic
equations are presented and the initial and boundary conditions are also given.

In doing so, we can see in the following chapters why stochastic finance uses the
results of diffusion theory.

1.1. General presentation of diffusion process

In general, a diffusion phenomenon is a process in which some physical
properties are transported at molecular or atomic level from one part of the space to
another part. The process is the result of random migration of small particles inside
the physical space. It determines the motion of matter as well as energy. From a
general point of view, the diffusion concept or phenomenon is also related to the
random movement of small particles, and a very simple example is given by
an observer on a skyscraper watching a crowded square: people move in all
directions randomly but uniformly. Another example is a red wine drop in a glass
filled with water. After some time the water becomes uniformly light pink in color.
This suggests that the wine overruns the water, the molecules of wine are
everywhere and the wine is said to have diffused into the water. This mass transport
is due to the molecular agitation with the result that zones with a high concentration
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of wine determine a net molecular mass movement in all directions toward zones
with lower wine concentration. In fact, an individual molecule of wine moves
randomly and in a dilute solution each molecule of wine acts independently of the
other molecules and undergoes collisions with the water molecules. The motion of a
single molecule of wine can be depicted by the term of a “random walk™ as shown in
Figure 1.1. The picture of random molecular motions should adapt with the fact that
a transfer of molecules from the region of higher concentration to the region of
lower concentration is observed. If two thin zones are considered with equal
volumes, one with a higher concentration and the other with a lower concentration,
there is a dynamic exchange. A net transfer of molecules from the higher
concentration to the lower concentration is obtained according to the second law of
thermodynamics. Some other examples and descriptions are found in several books
on this topic [BAK 08, CRA 75, CUS 09, GHE 88].

Figure 1.1. Path of Brownian motion

The molecular transfer determines a mass diffusion and, consequently, a
diffusion of the other physical properties, such as the energy or more precisely an
energy flux in conduction mode, is present. It needs to describe mathematically the
molecular random transfer and to obtain a macroscopic description by means of a



