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Preface

This is, first and foremost, a text for the introductory course in ordinary differential equa-
tions, usually taken by sophomore engineering and science majors after a two or three term
calculus sequence. The driving idea behind this particular book is that if all science majors
can be convinced to take the differential equations course along with the engineers, they
will be in a much better position if they go on to graduate school or even if they just want
to read the modern literature in their own field. An understanding of dynamical systems is
gradually becoming a necessity even for those in the biological sciences.

Much of my own research is in mathematical biology, and I know that there are new
and interesting problems out there to be solved. In looking at several texts used for teach-
ing courses in mathematical biology, I found that they tend to assume very little in the way
of a mathematical background. This would not be the case if these students could be en-
couraged to take a course in differential equations early in their career. One possible way
to accomplish this is to show students that problems involving differential equations are
often a lot more interesting than the problems seen in calculus. This is especially true in
the area of nonlinear equations, and is one reason why this book contains much more than
the usual amount of material on the geometry of nonlinear systems.

It is also my hope that getting engineers and applied scientists working together on
interesting problems at this level will lead to more joint projects later on, both in graduate
school and in industry. As an example of this type of cooperation, the final project in
Chapter 5 is based on a recent research paper written jointly by a mathematician and a
biologist.

Since not all students are fortunate enough to take a differential equations course in
their undergraduate career, another aim has been to make this book as readable as possible
so it can be used for self-study. Readability and worked-out answers to problems also
makes this text a likely candidate for a professor who wants to teach a “flipped” course in
differential equations.
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Sample Course Outline

At the University of Hartford, classes in differential equations (taught in the Mathemat-
ics Department) generally contain about 70-80% engineering students. They are mostly
sophomores who have just completed a two-term sequence in calculus (including a brief
introduction to separable equations), have had no formal exposure to linear algebra, and
are expected to gain a reasonable familiarity with Laplace transforms in the differential
equations course. The other 20-30% of the class is a mix of math and science students,
and there may even be a few music students who are interested in acoustics.

Most of the classes meet for 75 minutes, twice a week, during a term of approximately
14 weeks. A representative schedule for such a course is shown below.

Week Material Covered

1 Chap. 1, 2.1
{

2 22,23
\

3 24,26
1

4 2.7, project
1

5 3.153.2
)

6 33,34
1

7 3.5,3.7
{

8 4.1,4.2
i

9 4.3,4.4
1

10 5.1,5.2
1

11 5.3, project
+

12 6.1,6.2
{

13 6.3,6.4
A

14 6.5, project



X Sample Course Outline

If Laplace transforms is not a required topic in the course, much more time can be spent
on Chapter 5. It also gives the students more time to absorb the material on linear algebra
in Chapter 4.

There are three sections in the book that are not prerequisites for any other sections:
2.5 (More Analytic Methods), 3.6 (Linear Second-order Equations with Non-constant Co-
efficients), and 4.5 (The Matrix Exponential).



Contents

Preface vii
Sample Course Outline ix
1 Introduction to Differential Equations 1
Ll BasicTerminology : « o s+ ¢ 5 s s w5 w5 si0 & 8.5 45 & & & @8 &5 & 2
1.1.1  Ordinary vs. Partial Differential Equations . . . . . ... ...... 2

1.1.2 Independent Variables, Dependent Variables, and Parameters . . . . 3

1.1.3  Order of a Differential Equation . . . ... ... .......... 3

1.1.4  WhatisaSolution? . . ... ... ... ... ... ... ..., 3

1.1.5 Systems of Differential Equations . . . .. .. ... ... ..... 5

1.2 Families of Solutions, Initial-value Problems . . . . . .. ... ... .. 6

1.3  Modeling with Differential Equations . . . . . ... ... ....... 11

2 First-order Differential Equations 19
2.1  Separable First-order Equations. . . . . . ... .. ... ........ 19
2.1.1 Application 1: Population Growth . . . .. .. .. ... ...... 23

2.1.2  Application 2: Newton’s Law of Cooling . . . . .. ... .. .... 25

2.2  Graphical Methods, the Slope Field . .. ... ............. 28
2.2.1 Using Graphical Methods to Visualize Solutions . . . . . . ... .. 32

2.3 Linear First-order Differential Equations . . . . . ... ... ...... 36
2.3.1 Application: Single-compartment mixing problem . . . . . . . . .. 41

2.4  Existence and Uniqueness of Solutions . . . . . ... ... ....... 45

2.5 More Analytic Methods for Nonlinear First-order Equations . . . . . . 50
2.5.1 Exact Differential Equations . . . . . ... .. ... ........ 50

252 BemoulliEquations . . . . . .. ... ... .. ..., 54

253 Using Symmetries of the Slope Field . . . . .. ... ........ 56

26 Numerical Methods . . . . ... .. ... ... . . ... 58
26.1 Euler’'sMethod . ............. ... ... ... .. ... 59

2.6.2 Improved EulerMethod . . . . . ... ... ... .. ........ 62

2.6.3 Fourth-Order Runge-KuttaMethod . . . . . ... ... ... ... .. 64

2.7  Autonomous Equations, the Phase Line . . .. ... .......... 69
2.7.1 Stability — Sinks, Sources, and Nodes . . . . . .. ... ...... 71

2.7.2 Bifurcation in Equations with Parameters . . . . . .. .. ... ... 72

Xi



Xii Contents

3 Second-order Differential Equations 79
3.1  General Theory of Homogeneous Linear Equations . . . . . . ... .. 80
3.2  Homogeneous Linear Equations with Constant Coefficients . . . . . . . 86

3.2.1 Second-order Equation with Constant Coefficients . . . . . . . . .. 86
3.22 Equations of Order Greater Than Two . . . . .. . ... ... ... 90
3.3  The Spring-mass Equation . . . . . ... ... ... ... 92
3.3.1 Derivation of the Spring-mass Equation . . . . ... ... ... .. 93
3.3.2 The Unforced Spring-mass System . . . . . ... .......... 94
3.4  Nonhomogeneous Linear Equations . . . ... ... .......... 100
3.4.1 Method of Undetermined Coefficients . . . . . . .. ... ..... 100
342 Variationof Parameters . . . . . . . . . .t vttt e e 107
3.5 The Forced Spring-mass System . . . . . . ..« v v v v v v e 112
3.6  Linear Second-order Equations with Non-constant Coefficients . . . . . 123
3.6.1 The Cauchy-Euler Equation . . . . . . ... ... .......... 124
362 SeriesSoOlutions . s v < s s s v s s s s s an s v o 6 @ m e E 8 s 126
3.7  Autonomous Second-order Differential Equations . . . . .. ... ... 132
3.7.1 Numerical Methods . . . . . .. ... ... ... .. 133
3.7.2  Autonomous Equations and the Phase Plane . . . . ... ... ... 134

4 Linear Systems of First-order Differential Equations 141

4.1 Introductionto Systems . . . . . . ... .. Lo 141
4.1.1  Writing Differential Equations as a First-order System . . . . . . . . 142
4,12 Linear'SYStEMS . o v cs ¢ o « s wm 9 5 w5 5 5 6 5w WG s 143

42 Matrix Algebra . . . . ... 146

4.3  Eigenvalues and Eigenvectors . . . . . . . ... ... ... ... ... 153

4.4  Analytic Solutions of the Linear SystemX’' = AX . .. ......... 161
441 Application 1: Mixing Problem with Two Compartments . . . . . . 165
4.4.2 Application 2: Double Spring-mass System . . . . ... ... ... 167

4.5  Large Linear Systems; the Matrix Exponential . . . . . ... ... ... 172
4.5.1 Definition and Properties of the Matrix Exponential . . . . . . . . . 173
4.5.2 Using the Matrix Exponential to Solve a Nonhomogeneous System . 175
4.5.3 Application: Mixing Problem with Three Compartments . . . . . . 177

5 Geometry of Autonomous Systems 179
5. The Phase Plane for Autonomous Systems . . . . . . ... .. .... 180
5.2 Geometric Behavior of Linear Autonomous Systems . . . . . . . ... 183

5.2.1 Linear Systems with Real (Distinct, Nonzero) Eigenvalues . . . . . 183
5.2.2 Linear Systems with Complex Eigenvalues . . . . . ... ... ... 186
5.2.3 The Trace-determinantPlane . . . ... .. ... .......... 187
524 TheSpecial Cases . . . . . . . v v i it it e e e 189

5.3  Geometric Behavior of Nonlinear Autonomous Systems . . . . . . . . 193
5.3.1 Finding the EquilibriumPoints . . . . . .. ... ... ... ... .. 195
5.3.2 Determining the Type of an Equilibrium . . . . .. ... .... .. 196
5.3.3 A Limit Cycle the Van der Pol equation . . . . . ... ... .... 200

5.4  Bifurcations for Systems . . . . ... ... L. 203



Contents xiii

54.1 Bifurcationin a Spring-mass Model . . . ... ........... 203

5.4.2 Bifurcation of a Predator-prey Model . . . . .. ... ... ..... 205

5.4.3 Bifurcation Analysis Applied to a Competing Species Model . . . . 207

5.5 StudentProjects . . . . . . . ... e 210
5.5.1 The Wilson-Cowan Equations . . . . . ... .. ... ........ 211

5.5.2 A New Predator-prey Equation — putting it all together . . . . . . . 214

6 Laplace Transforms 217
6.1  Definition and Some Simple Laplace Transforms . . . . .. ... ... 217
6.1.1 Four Simple Laplace Transforms . . . . .. ... ... ... .... 219

6.1.2 Linearity of the Laplace Transform . . . . . .. ... ........ 220

6.1.3 Transforming the Derivativeof f(z) . ... .. ... ... ..... 221

6.2  Solving Equations, the Inverse Laplace Transform . . . .. . ... .. 222
6.2.1 Partial Fraction Expansions . . . . . . . .. .. ... .. ...... 224

6.3 ExtendingtheTable . . . . .. ... .. ... ... ... .. ... .. 228
6.3.1 Inverting a Term with an Irreducible Quadratic Denominator . . . . 229

6.3.2 Solving Linear Systems with Laplace Transforms . . . . ... ... 232

6.4  The UnitStep Function . . . . . . . .. ... ... ... ... 236

6.5 Convolution and the Impulse Function . . . . . . ... ... ...... 248
6.5.1 The ConvolutionIntegral . . .. ... ... .. ... ........ 248

6.5.2 ThelImpulse Function . . . . . . . . ... ... ... . ....... 250

6.5.3 Impulse Response of a Linear, Time-invariant System . . . . . . .. 253

A Answers to Odd-numbered Exercises 257
B Derivative and Integral Formulas 297
C Cofactor Method for Determinants 299
D Cramer’s Rule for Solving Systems of Linear Equations 301
E The Wronskian 303
F Table Of Laplace Transforms 305
Index 307

About the Author 315






CHAPTER 1

Introduction to Differential Equations

Differential equations arise from real-world problems and problems in applied mathemat-
ics. One of the first things you are taught in calculus is that the derivative of a function is the
instantaneous rate of change of the function with respect to its independent variable. When
mathematics is applied to real-world problems, it is often the case that finding a relation
between a function and its rate of change is easier than finding a formula for the function
itself; it is this relation between an unknown function and its derivatives that produces a
differential equation.

To give a very simple example, a biologist studying the growth of a population, with
size at time ¢ given by the function P(¢), might make the very simple, but logical, as-
sumption that a population grows at a rate directly proportional to its size. In mathematical
notation, the equation for P(¢) could then be written as

dP

E =rP(t).

where the constant of proportionality, 7, would probably be determined experimentally
by biologists working in the field. Equations used for modeling population growth can be
much more complicated than this, sometimes involving scores of interacting populations
with different properties; however, almost any population model is based on equations
similar to this.

In an analogous manner, a physicist might argue that all the forces acting on a particular
moving body at time ¢ depend only on its position x(7) and its velocity x’(z). He could
then use Newton’s second law to express mass times acceleration as mx”(¢) and write an
equation for x () in the form

mx"(t) = F(x(t),x'(1)),

where F is some function of two variables. One of the best-known equations of this type
is the spring-mass equation

mx" + bx" + kx = f(t), (1.1)

in which x(¢) is the position at time ¢ of an object of mass m suspended on a spring,
and b and k are the damping coefficient and spring constant, respectively. The function f
represents an external force acting on the system. Notice that in (1.1), where x is a function

1



2 1. Introduction to Differential Equations

of a single variable, we have used the convention of omitting the independent variable 7,
and have written x, x’, and x” for x(r) and its derivatives.

In both of the examples, the problem has been written in the form of a differential
equation, and the solution of the problem lies in finding a function P(¢), or x(¢), which
makes the equation true.

1.1 Basic Terminology

Before beginning to tackle the problem of formulating and solving differential equations,
it is necessary to understand some basic terminology. Our first and most fundamental defi-
nition is that of a differential equation itself.

Definition 1.1. A differential equation is any equation involving an unknown function
and one or more of its derivatives.

The following are examples of differential equations:

1. P'(t)y=rP(t)1—-P@)/N)—H harvested population growth
2 %;‘— - 0.9% +2x=0 spring-mass equation
3. I"(t) +4I(t) = sin(wt) RLC circuit showing “beats”
4. y'@) 4+ pO2@) =Dy )+ y@t) =0 van der Pol equation

< %"(X- y)+ ;ﬁv—zzu(x- y)=0 Laplace’s equation

(1)

For the first four equations the graphs above illustrate different ways of picturing the solu-
tion curves.

1.1.1 Ordinary vs. Partial Differential Equations

Differential equations fall into two very broad categories, called ordinary differential equa-
tions and partial differential equations. If the unknown function in the equation is a function
of only one variable, the equation is called an ordinary differential equation. In the list
of examples, equations 1-4 are ordinary differential equations, with the unknown func-
tions being P (¢), x(t), I(¢), and y(¢) respectively. If the unknown function in the equation
depends on more than one independent variable, the equation is called a partial differ-
ential equation, and in this case, the derivatives appearing in the equation will be partial
derivatives. Equation 5 is an example of an important partial differential equation, called
Laplace’s equation, which arises in several areas of applied mathematics. In equation 5, u
is a function of the two independent variables x and y. In this book, we will not consider




