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PREFACE

This volume contains two substantial contributions, on the use of the cathodo-
luminescent signal in scanning electron microscopy and on fuzzy transforms.

The first chapter fills a serious gap in the literature for, although cathodo-
luminescence is discussed in all the books on scanning electron microscopy,
there has been no recent account of the physics of the phenomenon and of
the associated instrumentation. C.M. Parish and P.E. Russell take us through
the basic physics and explain what types of signal can be captured, after
which they present the types of accessory needed for spectral imaging and
pulsed operation, as well as the more standard detectors. The most active
research areas are then summarized, and the use of cathodoluminescence in
the scanning transmission electron microscope is evoked.

In the second contribution, I. Perfilieva, to whom we owe many original
ideas in fuzzy set theory, discusses the difficult topic of fuzzy transforms.
After explaining the basic mathematical tools (semirings and semimodules),
she describes semilinear spaces and introduces the required function spaces.
This brings us to the real subject of the review, fuzzy transforms. These
are analyzed in great detail, and the paper concludes with a good variety of
applications

Once again, I thank all the authors for contributing to the series and for the
trouble they have taken to make their material accessible to a wide readership.
Forthcoming contributions are listed in the following pages.

Peter W. Hawkes
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2 PARISH AND RUSSELL

I. INTRODUCTION
A. What Is Cathodoluminescence?

Cathodoluminescence (CL) is light emitted by a solid material due to irradi-
ation by an electron beam, which is typically in the energy range of several
hundred electron volts to several hundred kiloelectron volts. When the spectral
distribution of light is studied, CL spectroscopy is performed. When the
intensity of light emission is mapped in space, this is termed CL microscopy.
The most common and versatile way to perform CL experiments is with a
scanning electron microscope (SEM) that has been specially equipped with
some form of light collection and detection apparatus. It is also possible to
perform CL with an optical microscope equipped with an electron flood gun.
CL spectroscopy can also be performed in a nonimaging mode in a vacuum
chamber equipped with an electron source and an optical spectrometer. In
recent years, the performance of CL microscopy and spectroscopy in a
scanning transmission electron microscope (STEM) has grown in popularity.
This review emphasizes SEM-CL and briefly discusses STEM-CL.

CL is a valuable technique for studying the optical emission properties
of semiconductor and insulating materials at a very fine spatial resolution.
Changes in CL spectra with processing or service can lead to information
about the formation of defect states or the change in defect populations.
CL microscopy allows locations of defects or features to be mapped with
resolution that can approach tens of nanometers. CL is an indispensable tool
for the study of light emission from materials and the factors that improve
or degrade it in the semiconductor and optoelectronic industries. CL is also
heavily used in studies of mineralogy and geology.

This review attempts to cover advances in CL instrumentation, theory,
and application. A number of excellent reviews of CL or of luminescence
experiments in general have been published (Bajaj, 2001; Gustafsson, 2006;
Gustafsson et al., 1998; Herman et al., 1991; Newbury et al., 1986; Phillips,
2006; Yacobi and Holt, 1986, 1990). As such, the emphasis here is on
advances published in the past several years, although important articles or
references published less recently also are discussed.

We begin by discussing the basic physics that gives rise to the CL signal
and how the nature of the solid material under investigation changes the CL
response. Brief discussions of experimental considerations for performing
CL in the SEM and experimental techniques that complement CL follow.
A number of different types of CL experiments can be performed, and
strategies for performing these experiments are presented, followed by a
review of advances in SEM-CL instrumentation and theory.
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After a discussion of the advances in instrumentation and theory, the
review moves to fields of active CL research, such as gallium nitride—based
optoelectronic materials and photovoltaic materials. Then, the use of CL as a
probe of nonoptical properties of materials is reviewed. Finally, STEM-CL is
discussed, followed by a summary and conclusions.

B. Carrier Generation and Motion

CL and related techniques, such as photoluminescence or electron beam-—
induced current, are predicated on the creation of electron—hole pairs (EHPs)
within the sample being investigated. The beam of a scanning electron
microscope is ideal for this purpose (Newbury et al., 1986; Yacobi and Holt,
1990). The impact of an SEM primary beam electron with typical energies
of 100 eV to 30 keV with a nonmetallic sample results in many different
inelastic scattering processes as the beam electron loses energy in the solid
(Goldstein et al., 2003; Newbury, 1986). The beam electrons have sufficient
energy to promote electrons (e~ ) from the valence band (VB) of the solid into
the conduction band (CB), which leaves behind holes (A7) in the VB. Thus,
an EHP is formed, as shown in Figure 1.

As the beam electron scatters through the solid, it continually loses energy.
It has been found empirically (Klein, 1968; Newbury et al., 1986; Yacobi and
Holt, 1990) that the average amount of energy lost per EHP generated (Egnp)
is &3 Egap, Where Egap is the bandgap of the material. The experimental
data from which these Eggp &~ 3 Egap data are derived are shown as Figure 2.
Thus, a single beam electron produces many EHPs within the sample. For
example, a 1-keV electron incident on gallium nitride (GaN), which has
Egap =~ 3.3 eV (Egnp =~ 10eV), would be expected to produce an average

Energy

Distance

FIGURE 1. Schematic illustration of EHP generation. CB, Conduction band; VB, valence band.
(From Parish, 2006.)
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FIGURE 2. Experimental data indicating the approximate Egyp = 3 EGgap relation. (Reprinted
with permission from Klein, 1968.) © 1968 American Institute of Physics.

of 100 EHPs before exhausting its incident energy. Quantitatively, the actual
number of EHPs produced is less than this limit, as backscattered electrons do
not necessarily deposit all of their incident energy into the sample. The rate of
EHP generation, expressed in EHPs generated per second, can be expressed
as shown in Eq. (1):

_ Eo(1 — n)ip
Eenpq

Here, E( is the SEM beam energy, Egpp is the energy per EHP cre-
ation, i is the SEM beam current, ¢ is the elementary electronic charge
(1.6 x 10719 C), and (1 — n) is a factor to account for the energy lost

80 (1)



