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Preface

This book provides an up to date review of the state of the art of catalytic
reactions in ionic liquids as well as the formation of catalytic materials using
ionic liquid methods. Catalytic reactions were amongst the first to be
undertaken in these neoteric solvents with electrocatalytic studies being
reported in the 1960s. Thereafter, there has been an explosion in the interest
in this area starting with carbon-carbon bond forming reactions utilizing
ionic liquids as the catalyst as well as the solvent in Friedel-Crafts, Heck and
Diels-Alder reactions. From there the field moved onto study gas-liquid
reactions, asymmetric processes and the conversion of biomass. A wide
range of catalysts have been utilized and modified to be compatible with
ionic liquid processes including homogeneous complexes, nanoparticles,
supported metal heterogeneous catalysts, supported ionic liquid based
catalysts, zeolites, enzymes, electrocatalysts and photocatalysts. In the vast
majority of cases, the ionic liquid based processes have been compared with
analogous molecular derived systems with significant advantages being
demonstrated, for example, in rate, selectivity, recycle of the catalyst or work
up procedures. In a number of cases, the ionic liquid based systems have
enabled new reactions to be undertaken. Due to the wide range of ionic
liquids available and the ability to functionalise the cation and the anion to
tailor their physical and chemical properties, the field of catalysis in ionic
liquids has been transformed over the last 20 years from both the
perspective of novel materials synthesis as well as reactivity-selectivity
profiles. The chapters provide a perspective on how ionic liquid properties
can be modified by structural changes to enable the catalytic materials and
processes to be controlled. In addition, the reviews provide a summary of
where our understanding lies in these systems. The complex nature of the
interactions involved and the potential these systems have to change many
industrial processes provide significant opportunities for future study.
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vi Preface

This is particularly true in the translation of the technologies under study
from the bench scale to pilot and full scale industrial utilization where the
recovery of the ionic liquids, their toxicity and their added value to a process,
for example, are critical. We would like to thank all the authors for their hard
work in reviewing the subject matter for this book and for providing their
insight into the future.

Christopher Hardacre and Vasile 1. Parvulescu
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CHAPTER 1

Catalytic Conversion of
Biomass in Ionic Liquids

HUI WANG, LEAH E. BLOCK AND ROBIN D. ROGERS*

Center for Green Manufacturing and Department of Chemistry,
The University of Alabama, Tuscaloosa, AL 35487, USA
*Email: rdrogers@as.ua.edu

1.1 Introduction

The fossil fuel-based economy is facing several problems and challenges,
which involve the increasing emissions of CO,, decreasing reserves, and
increasing energy prices.' These challenges have driven the search for new
transportation fuels and bioproducts to substitute the fossil carbon-based
materials. Biomass is defined as organic matter available on a renewable
basis, and it includes forest and mill residues, agricultural crops and wastes,
wood and wood wastes, animal wastes, livestock operation residues, aquatic
plants, and municipal and industrial wastes.” Biomass is deemed a sus-
tainable and green feedstock for the production of fuels and fine chemicals,
although perhaps not always in the way they are proposed to be used.

A major source of biomass is lignocellulosic biomass, which is particularly
well suited for energy applications because of its large-scale availability, low
cost, and environmentally benign production. Lignocelluloses are composed
of cellulose, hemicellulose, lignin, extractives, and several inorganic ma-
terials, of which the first three biopolymers are the main components. The
cellulose microfibrils that are present in the hemicellulose-lignin matrix are
often associated in the form of bundles or macrofibrils.’ The structure of
these naturally occurring cellulose fibrils is mostly crystalline in nature and
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2 Chapter 1

highly resistant to attack by enzymes. In addition, the presence of lignin also
impedes enzymatic hydrolysis, as enzymes bind onto the surface of lignin
and hence do not act on the cellulose chains.”

Usually, conversion of lignocellulosic biomass is carried out in the pres-
ence of catalysts, such as strong liquid and solid acids. Various types of
lignocellulosic biomass, such as wood chips, sawdust, corncobs, and walnut
shells, have been tentatively processed by liquid acid-catalyzed hydrolysis®®
with H,S0,, HCl, H3PO,, etc. Despite the relatively high catalytic activity
of these liquid acids in the hydrolysis of cellulosic materials, by and large
their uses are still uneconomical because the process suffers from severe
corrosion, a requirement for special reactors, and costly separation and
neutralization of waste acids.’

Recently, attention has been paid to the use of solid catalysts in the de-
polymerization of lignocellulosic biomass. Several types of solid acids, such
as Nafion, Amberlyst, —SO3;H functionalized amorphous carbon or meso-
porous silica, H-form zeolites like HZSM-5, heteropolyacids, and even metal
oxides (e.g., y-Al,03) have been explored for their catalytic performance in
the hydrolysis of lignocellulosic biomass.’®*? 1t has been shown that solid
Bronsted acids are efficient catalysts for the hydrolysis of lignocellulosic
biomass.'***

The ability of ionic liquids (ILs, now defined as salts with melting points
below 100 °C'®) to dissolve biomass provides new opportunities for the
pretreatment and conversion of lignocellulosic biomass. In 2002, we re-
ported that certain ILs, such as 1-butyl-3-methylimidazolium chloride
([C4mim]CI) can dissolve cellulose by as much as 25 wt% without any pre-
treatment."” Since then, increasing numbers of scientific papers, patents,
and conference abstracts in this area have been published, and ILs have
become one of the “hot-topics” in polysaccharide research. Up to now, ILs
have been shown to be able to dissolve a number of pure biopolymers, in-
cluding cellulose,'”** hemicellulose,*® lignin,*""** chitin,*® starch,?” silk,*®
wool,*® as well as a variety of raw biomass, such as wood,’*?" bagasse,****
corn stover,* wheat straw®> and shrimp shell.?® Not only is the dissolution
of biomass in ILs widely studied, but also its conversion into value-enhanced
products has drawn the attention of scientists.

In this chapter, the catalytic dissolution and degradation of pure cellulose,
lignin (including lignin model compounds), hemicellulose, and raw lig-
nocellulosic biomass materials in the presence of ILs will be reviewed. Sev-
eral challenges in this area will also be addressed.

1.2 Catalytic Dissolution of Lignocellulosic Biomass

Lignocellulosic biomass presents a greater challenge for dissolution because
of the tight, covalent, hydrogen bonded matrix of carbohydrate polymers
(cellulose and hemicellulose) and phenolic polymers (lignin),*® resulting in
insolubility in common solvents. Various pretreatment methods for lig-
nocelluloses have been developed to open the compact structure and make



