Rt ILE

(ZRIhR - SB6hR)

IAN SOMMERVILLE

Software
Engmeermg

6th Edition

#}lmlﬂ.tﬂh‘}ﬂi @
China Machin \ A 4

R B B K

£

(RIZhR - SB6hR)

s g g
e ,ﬁzm@%@@éﬁg

lan Sommerville: Software Engineering, 6th Edition (ISBN: 0-201-39815-X).

Copyright © Addison-Wes]éy Publlishers Limited 1982, 1984, Copyright © Pearson
Education Limited, 1989, 2001.

This edition of Software Engineering, 6th Edition is published by arrangement with Pearson
Education Limited. Licensed for sale in the mainland territory of the People's Republic of China

only, excluding Hong Kong, Macau and Taiwan.

A 453 SO B iR ply 2 [Pearson Education3f A28 HARR S I ERALH AR, oA 28 i Rl 15
WA, AUMEM X R ER A

MR EN R HREH E AR XS (AEAEFE. |, aBKX).

WU A, RELTE.

EHIRBIRE: MF: 01-2003-1010

BBERRE (CIP) HiE

BT (YO - SB6RR) / () FEIBEERR/R (Sommerville, 1.) F. —dbat: HIHET
b i RREE, 2003.4

(R RRAE)

HBAFE L Software Engineering, 6th Edition

ISBN 7-111-11810-3

I.%-- N.gE-- M. K48 -3 V. TP311.5
o [i A B A CTPEUEE % 7 (2003) 450172275

HUBE Tk HHARAL ClERmTmEE HREA#22% WECAHE 100037)
ATt 4 ¥

A= (L SLENRITERR - Bt RATR AT
200344 7 55 1 R | K ER R

787mm x 1092mm 1/16 - 4525615

EN%c: 0001-3 0007

A 69.0070

FUlgAs, WAL, BOT, BRIT, tathRiTsia

AR E NS

XEE XKV, BERKOPEBRHRMESERAEARNLE, #0857 EREARBENE
RIS T WY hERXFNES, EXEEFEEERZBOANTEERLERE
e, HAREE . ER RIS, EEML R SHE R BB S, ARG
BIVFZ A AL} R B AR OEMBOEEMRATE , BB =4 SRR, A OUER TR
HIfERE, BB TEARMELE, BEFEERME, XEFEEME, HMEFARSEEA MR
HE TR

A, E2RERAKEENES T, REMHEN ™ LERBE, &V AAHTRA #
Y. AT EVLEE AR RA RIS, SRS, MELEMMERERFT AR LEE
BEERE, EREFGREARAZEREE. MEARBPLHIRT, XESLEERERLT
AHA R R HERBENZBBM A FEZEBHEEZL . B, 512 —#EMEET
OB RETENEFEF LN R RERRGEIER, hRSHREN. 2REEMi
R—WKFER D 2Z .

P T R R FEEARARREERS “HREANHFTRS". B1998FH R,
EELAFME TFELRET #E. BREEIMBEM L. 23 ILEHAWE S, KIS
Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan Kaufmann®§{tt 53 & tH A FIE T TR
HIAEXRR, WENBA ¥ E Fh ¥k ik 4 Tanenbaum, Stroustrup, Kernighan, Jim
Gray¥ KM A FZ M —MEMIES, LI “THEOBZEAE" HERHR, ¥, HREE
B KEAOSCEMEE, REERRTXEABRRCAKERE

“THEVAEEAR" MR TESB TERIMEENS DB, BEANEEAURETHE
LTS S, AT S HEE T BEME RN T/E; mEBHEE MY XEEARERE
HItEHE, AELH N BN P ERERF. €4, “THEIREAE" BRI TIEE &,
REFEEZRF PR LT REMOM, FEFZEERANEXBHNSEBE, hit—5#
ITESRBEITT TREHERE.

BEAE F R R P) 5 B ENEMRENZ G R ,, BF F X ESMTEYLE A7 K
BEA—NTH B Jitk, REARBMAS I HEH G HE, £ “FEHE" HEHUNZT
=R EOLEH : B “THRVRENS" ZAh, XREEDRRAI SO, U 800 FF RE
“GRFIRBE" ; R, SLESXETHEEMSE “Schaum’s Outlines” RINAR “£EZ
WZEIJRRRT". HTRIEX=FNBBUERNE, Fetdh T B hF g migs, %
BEAAEE T hEBERE . EEA%E. HEAE, BRI KRE, EERE, LEBGERE,
MRAFE, MLKE, PEBHE R, RRETLKRE., ARGERE,. PEARKE., LR
UMUK AFE . AEEHEE K. Pk, MERTRYE ., FMNKE, Mt T¥E. FEE

Fm B & EWENE P05 BN E S REARTUA AT RIS M & L= H4) %
FIRIFBERE", RIATHR SR A AR . :

X =2 A4S e O B R R A A FRAMR B S H . R E N R R R TR B AR T Ay
BUF B EITER . HPiFSEMBE IM. L T., Stanford, U.C. Berkeley, C. M. U. Z{it 4 i
KEEFRM. MUK TRFRT. $ai8n. BERS. HHRIERSR . BARE . WiEE
ARG, B, EESM% . BBECESE A RFETE L R I RO RE,
i H&SAFE—ANEBESRITEZT. ANBZ=TFNAE, AcHattRLE
FT R R o 7 K] A 1R B I KA IR 5 Z T, B i FE T LR 2) B b iy 5
MAZ

PUBHIMER . UMM . —WMEE . PO . RRAm 4, xR RERII0E
P THREMRIE, BRI EFRRERE, MABMELELRITEIX L% B E
TR B o B R IRATT A9 5 S AR A5 U Ao HERE A R A T R A FRAT T AR
HIERA TAEIE, ROTMKATENT

B, F-liE{4F: hzedu@hzbook.com
KRG (010) 68995264
BAMAE: LR EIRE E A RS
BB 4% : 100037

ERIBRERS

(etk R T)
o BEE REH R EH
£ HEF R#E AWK

FHE FERR Fa¢ mAF
I 7 495 &KX HKRa Aai
SR &2 & e e A
A8 T L%k EHR E&EL

b3 £ fa Bew #As

Preface

Software systems are now ubiquitous. Virtually all electrical equipment now
includes some kind of software; software is used to help run manufacturing indus-
try, schools and universities, health care, finance and government; many people
use software of different kinds for entertainment and education. The specification,
development, management and evolution of these software systems make up the
discipline of software engineering.

Even simple software systems have a high inherent complexity, so engineering
principles have to be used in their development. Software engineering is therefore
an engineering discipline where software engineers use methods and theory from
computer science and apply this cost-effectively to solve difficult problems. These
difficult problems have meant that many software development projects have not
been successful. However, most modern software provides good service to its users;
we should not let high-profile failures obscure the real successes of software engin-
eers over the past 30 years.

Software engineering was developed in response to the problems of building large,
custom software systems for defence, government and industrial applications. We
now develop a much wider range of software, from games on specialised consoles
through personal PC products and web-based systems to very large-scale distrib-
uted systems. Although some techniques that are appropriate for custom systems,
such as object-oriented development, are universal, new software engineering tech-
niques are evolving for different types of software. It is not possible to cover every-
thing in one book, so I have concentrated on universal techniques and techniques
for developing large-scale systems rather than individual software products.

Although the book is intended as a general introduction to software engineering,
it is oriented towards my own interests in:system requirements engineering and

Vil

Preface

critical systems. I think these are particularly important for sofiware engineering in
the 21st century where the challenge we face is to ensure that our software meets
the real needs of its users without causing damage to them or to the environment.

The approach that 1 take in this book is to present a broad perspective on soft-
ware engineering and I don’t concentrate on any specific methods or tools. I dis-
like zealots of any kind whether they are academics preaching the benefits of formal
methods or salesmen trying to convince me that some tool or method is the answer
to software development problems, There are no simple solutions to the problems
of software engineering and we need a wide spectrum of tools and techniques to
solve software engineering problems.

Books inevitably reflect the opinions and prejudices of their authors. Some

readers will inevitably disagree with my opinions and with my choice of material.

Such disagreement is a healthy reflection of the diversity of the discipline and is
essential for its evolution. Nevertheless, I hope that all software engineers and soft-
ware ‘engineeti{)g students can find something of interest here.

Like many software systems, this book has grown and changed since its first edi-
tion was published in 1982. One of my goals in preparing this edition was to reduce
rather than increase the size of the book and this has entailed some reorganisation
and difficult decisions on what to cut out while still including important new mater-
ial. The end result is a book that is about 10% shorter than the fifth edition.

* The book has been restructured into seven rather than eight parts covering an
introduction to software engineering, specification, design, critical systems devel-
opment, verification and validation, management, and software evolution.

e There are new chapters covering software processes, distributed systems archi-
tectures, dependability and legacy systems. The section on formal specification
has been cut to a single chapter and material on CASE has been reduced and
distributed to different chapters. Coverage of functional design is now included
in the new chapter on legacy systems. Chapters on verification and validation
have been amalgamated.

¢ All chapters have been updated and several chapters have been extensively rewrit-
ten. Reuse now focuses on development with reuse, with material on patterns
and component-based development; object-oriented design has more of a process
focus; the chapters on requirements have been separated into chapters on the
requirements themselves and chapters on the requirements engineering process;
cost estimation has been updated to COCOMO 2.

* The introductory part now includes four chapters. 1 have taken introductory
material that was distributed throughout the book in the fifth edition and covered

Preface IX

it all in this part. Chapter 1 has been completely rewritten as a set of frequently
asked questions about software engineering.

* The material on critical systems has been restructured and integrated so that
reliability, safety and availability are not covered as separate topics. I have
introduced some material on security as an attribute of a critical system.

* Program examples are now in Java and object models are described in the UML.
Ada and C++ examples have been removed from the text but are available from
my web site.

The further reading associated with each chapter has been updated from previ-
ous editions, However, in many cases, articles written in the 1980s are still the best
introduction to some topics.

The book is aimed at students taking undergraduate and graduate courses and at
software engineers in commerce and industry. It may be used in general software
engineering courses or in courses such as advanced programming, software
specification, software design or management. Practitioners may find the book use-
ful as general reading and as a means of updating their knowledge on particular
topics such as requirements engineering, architectural design, dependable systems
development and process improvement. Wherever practicable, the examples in the
text have been given a practical bias to reflect the type of applications which soft-
ware engineers must develop. =

I assume that readers have a basic famnhanty with programming and modern com-
puter systems and knowledge of basic data structures such as stacks, lists and queues.

There are three main types of software engineering courses where this book can be
used:

1. General introductory courses in software engineering For students who have
no previous software engineering experience, you can start with the introduc-
tory section, then pick and choose the chapters from the different sections of
the book. This will give students a general overview of the subject with the
opportunity of more detailed study for those students who are interested.

X Preface

2. Introductory or intermediate courses on specific software engineering topics
The book supports courses in software requirements specification, software design,
software engineering management, dependable systems development and soft-
ware evolution. Each of the parts in the book can serve as a text in its own
right for an introductory or intermediate course on that topic. Some additional
reading 1s suggested for these courses.

3. More advanced courses in specific software engineering topics In this case,
the chapters in the book form a foundation for the course which must be
supplemented with further reading which explores the topic in more detail. All
chapters include my suggestions for further reading and additional reading is
suggested on my web site.

The benefit of a general text like this is that it can be used in several different
related courses. At Lancaster, we use the text in an introductory software engineering
course, in courses on specification, design and critical systems and in a software
management course where it is supplemented with further reading. With a single
text, students are presented with a consistent view of the subject. They also like the
extensive coverage because they don’t have to buy several different books.

This book covers all suggested material in the SE Software Engineering com-
ponent of the draft computer science body of knowledge proposed by the ACM/IEEE
in the Computing Curricula 2001 document. The book is also consistent with the
forthcoming IEEE/ACM ‘Software Engineering Body of Knowledge’ document which
is due for publication sometime in 2000 or 2001.

My web site is http://www.software-engin.com and this includes links to material
to support the use of this book in teaching and personal study. The following down-
loadable supplements are available:

* An instructor’s guide including hints on teaching using the book, class and term
project suggestions, case studies and examples and some solutions to the exer-
cises. This is available in Adobe PDF format.

* A set of overhead projector transparencies for each chapter. These are available
in Adobe PDF and in Microsoft PowerPoint format. Instructors may adapt and
modify the presentations as they wish.

* Source code in Java for most of the individual program examples, including
supplementary code required for compilation.

Preface Xl

* Additional material based on chapters from previous editions on algebraic speci-
fication, Z and function-oriented design. Ada and C++ examples as used in the
fifth edition are also available.

This page also includes links to copies of slides and papers on systems engin-
eering, links to other software engineering sites, information on other books and
suggestions for additional further reading.

I am always pleased to receive feedback on my books and you can contact me
by e-mail at ian@software-engin.com. However, I regret that I don’t have time to
give advice to individual students on their homework. -

A large number of people have contributed over the years to the evolution of this
book and I'd first like to thank everyone who has commented on previous editions
and made suggestions for change. I am grateful to the reviewers of initial drafts of
this text for their helpful comments and suggestions which helped me a great deal
when completing the final version.

The reviewers of the first draft were Andy Gillies and Lindsey Gillies of the
University of the West of England, Joe Lambert of Penn. State University, Frank
Maddix of the University of the West of England, Nancy Mead of the Software
Engineering Institute, Pittsburgh, Chris Price of the University of Wales,
Aberystwyth, Gregg Rothermel of Oregon State University and Guus Schreiber of
the University of Amsterdam. I'd particularly like to thank my friends Ron
Morrison of St Andrews University and Ray. Welland of Glasgow University who
have reviewed previous editions and again volunteered to review this text.

Finally, my family has put up with my absence for more evenings than I like to
think while I finished this book. Thanks to my wife Anne and my daughters Ali
and Jane for their coffee and tolerance.

Ian Sommerville
Lancaster, February 2000

Part 1

Part 2

Part 3

Part 4

Part 5

Part 6

Part 7

Preface

Overview

Chapter 1 Introduction »

Chapter 2 Computer-based system engineering
Chapter 3 Software processes

Chapter 4 Project management

Requirements

Chapter 5 Software requirements

Chapter 6 Requirements engineering processes
Chapter 7 System models

Chapter 8 Software prototyping

Chapter 9 Formal specification

Design

Chapter 10 Architectural design

Chapter 11 Distributed systems architectures
Chapter 12 Object-oriented design

Chapter 13 Real-time software design
Chapter 14 Design with reuse

Chapter 15 User interface design

Critical Systems

Chapter 16 Dependability

Chapter 17 Critical systems specification
Chapter 18 Critical systems development

Verification and Validation

Chapter 19 Verification and validation
Chapter 20 Software testing
Chapter 21 Critical systems validation

Management

Chapter 22 Managing people
Chapter 23 Software cost estimation
Chapter 24 Quality management
Chapter 25 Process improvement

Evolution

Chapter 26 Legacy systems

Chapter 27 Software change

Chapter 28 Software re-engineering
Chapter 29 Configuration management

References
Index

20
42
n

95

97
121
148
171
192

213

215
239
260
285

327

351

353
371
392

417
419

467

487

489
511
535
557

579

581
601
622
641

679

Chapter 1

Chapter 2

Contents

Preface

Introduction

1.1

1.2

FAQs about software engineering

Professional and ethical responsibility

Key points
Further reading
Exercises

Computer-based system engineering

2.1
2.2
23
24

2.5

Emergent system properties
Systems and their environment
System modelling

The system engineering process

System procurement

Vil

14

17
18
18

20

22
24
26
29

37

XIV Contents

Key points 39
Further reading 40
Exercises 40
Chapter 3 Software processes 42
3.1 Software process models 44
3.2 Process iteration 51
3.3 Software specification : 55
3.4 Software design and implementation 56
3.5 Software validation ' 60
3.6 Software evolution 63
3.7 Automated prdcess support 63
Key points : 68
Further reading 68
Exercises 69
Chapter 4 Project management 71
4.1 Management activities 73
42 Project planning 75
4.3 Project scheduling 78
4.4 Risk management 84
Key points 90
Further reading 91
Exercises 92

Chapter 5 Software requirements 97
5.1 Functional and non-functional requirements 100
5.2 User requirements 106

5.3 System requirements 109

Contents XV

Chapter 6

Chapter 7

Chapter 8

5.4 The software requirements document 115
Key points 119
Further reading 119
Exercises 120
Requirements engineering processes 121
6.1 Feasibility studies 123
6.2 Requirements elicitation and analysis 124
6.3 Requirements validation 137
6.4 Requirements management 139
Key points 145
Further reading 145
Exercises 146
System models 148
7.1 Context models 150
7.2 Behavioural models 153
7.3 Data models 158
7.4 Object models 7 160
7.5 CASE workbenches 166
Key points 168
Further reading 169
Exercises 169
Software prototyping : 171
8.1 Prototyping in the software process 174
8.2 Rapid prototyping techniques 180
8.3 User interface prototyping 188
Key points ' ' 189
Further reading 190

Exercises 190

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Formal specification

9.1 Formal specification in the software process
9.2 Interface specification
9.3 Behavioural specification

Key points ,
Further reading
Exercises

Architectufél design

10.1 System structuring

10.2 Control models

10.3 Modular decomposition

10.4 Domain-specific architectures

Key points
Further reading
Exercises

Distributed systems architectures

11.1 Multiprocessor architectures
11.2 Client-server architectures
11.3 Distributed object architectures
11.4 CORBA

Key points
Further reading
Exercises

Object-oriented design

12.1 Objects and object classes
12.2 An object-oriented design process

192

194
197
204

209
210
210

215

219
224
229
233

236
237
237

239

243
244
249
252

257
258
258

260

262
267

Contents XVII

Chapter 13

Chapter 14

Chapter 15

12.3 Design evolution

Key points
Further reading
Exercises

Real-time software design

13.1 System design

13.2 Real-time executives

13.3 Monitoring and control systems
13.4 Data acquisition systems

Key points
Further reading
Exercises

Design with reuse

14.1 Component-based development
14.2 Application families
14.3 Design patterns

Key points
Further reading
Exercises

User interface design

15.1 User interface design principles
15.2 User interaction :
15.3 Information presentation

15.4 User support

15.5 Interface evaluation

Key points
Further reading
Exercises

280

282
282
283

285

287
291
295
300

303
303
304

306

310
318
322

325
325
326

327

330
332
334
340
345

347
348
348

