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to my son, Andre






Preface

The purpose of this book is to provide a concise yet detailed account of
fundamental concepts in modern algebra. The target audience for this
book is first-year graduate students in mathematics, though the first two
chapters are probably accessible to well-prepared undergraduates.

The book contains five chapters. In Chapter 1 we cover groups, sub-
groups, quotient groups, homomorphisms of groups, and group struc-
ture, including cyelie groups, the Structure Theorem for finitely generated
Abelian groups, Cauchy’s Theorem, and Sylow’s Theorems. In Chapter 2
we consider rings, the group of units of a ring, ideals, quotient rings, and
ring homomorphisms. Included also are sections on localizations and com-
pletions. In Chapter 3 we turn to modules. We begin with a review of
both finite and infinite dimensional vector spaces, and then generalize to
modules over PIDs and Noetherian rings. We include sections on projec-
tive modules, tensor products of modules, algebras, and the discriminant
of modules over an integral domain. In Chapter 4 we define simple alge-
braic extensions of @ and introduce the Galois group of the splitting field
of a monic irreducible polynomial over Q. We state and prove the Funda-
mental Theorem of Galois Theory. We then follow with an introduction
(essentially) to algebraic number theory: we include material on the ring
of integers of an algebraic extension, the Noetherian propery of the ring of
integers, Dedekind domains and unique factorization of ideals. In the final
chapter (Chapter 5) we cover the basic theory of finite fields and linearly
recursive sequences.

We begin each chapter with an overview of the material to be covered.
At the end of each chapter we give an extensive list of exercises which range
from basic applications of the theory, to problems designed to challenge the
reader. We also include some “Questions for Further Study”, which are
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advanced problems suitable for master’s level research projects.

I would like to thank the fellow algebraists who read and commented on
earlier drafts of the manuscript. Their suggestions, especially those regard-
ing the organization of the sections, have been duly noted and incorporated
into the book. My appreciation is also extended to E. H. Chionh and Li Bai,
at World Scientific, who have skillfully guided me through the publication
process. To my wife, Rebecca Brower, who is also an academic, and who
certainly understands the challenge of a writing project of this sort, I thank
you for your patience, kindness and companionship. Any finally, to my son
Andre, to whom this book is dedicated, I thank you for understanding that
although writing takes a lot of time, in the end it is a worthy endeavor.

Robert G. Underwood
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Chapter 1

Groups

In this chapter we introduce semigroups, monoids, and groups. give some
basic examples of groups and discuss some of their elementary properties.
We then consider subgroups, cosets and Lagrange’s theorem, normal sub-
groups and the quotient group. We next turn to the basic maps between
groups: homomorphisms and isomorphisms and their kernels. (Through-
out this book, map = function.) We give the First, Second and Third
Isomorphism theorems and the Universal Mapping Property for Kernels.

We close the chapter with the study of group structure, including gener-
ating sets for groups and subgroups and the notion of a cyclic group. From
the cyclicity of the additive group of integers Z we obtain greatest com-
mon divisors, least common multiples, Bezout’s Lemma and the Chinese
Remainder Theorem. We state the structure theorem for finitely generated
abelian groups. Regarding the structure of groups in general, we introduce
G-sets, and give Cauchy’s Theorem and Sylow’s First, Second, and Third
Theorems.

1.1 Introduction to Groups

In this section we define semigroups and monoids and give some examples,
including the monoid of words on a finite alphabet. From semigroups and
monoids, we develop the concept of a group, discuss finite, infinite and
abelian groups, and prove some elementary properties of groups. We intro-
duce examples of groups that we will appear throughout this book, includ-
ing the additive group of integers, Z, the multiplicative group of non-zero
real numbers, R* and the group of residue classes modulo n, Z,,. For fur-
ther examples of groups we construct the 3rd and 4th dihedral groups, D3,
Dy as the groups of symmetries of the equilateral triangle and the square,
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as well as the symmetric group on n letters, S,,.

* * *

Let S be a non-empty set of elements. The cartesian product on S is
defined as S x S = {(a,b): a,be S}.

Definition 1.1. A binary operation on S is a function B : S x S — 5;
we denote the image of (a.b) by ab.

A binary operation is commutative if for all a,b € S, ab = ba. A
binary operation is associative if for all a.b, ¢ € S, a(be) = (ab)c.

Definition 1.2. A semigroup is a set S together with an associative bi-
nary operation S x S — S.

Let S be a semigroup and let ay,a2,a3 € S. We define the product
ajasaz to be the common value of the expressions (aja2)as and ay(azas).
For n > 4 we define the product of elements a;.as.....a, € 5 induc-
tively to be

n n—1
I I a; = H a; | ay
= t=1

v . n . . . -
In defining [['_, a; in this way we are asserting that we can insert parenthe-
ses into the product in any manner we choose without changing its value.
For example, a,asazay is the common value of the expressions

(arasaz)ay, (ay(asas))ay, ((araz)az)ay, ai((azas)ay), (ajas)(azay),

ay(az(asay)), ar(azas)as, (ajaz)azay, ajaz(aszay), ai(azazay).

Definition 1.3. A monoid is a semigroup S in which there exists an
element ¢ € S with ea = a = ae,Va € S. Such an element e is called an
identity element for the monoid.

For example, the set of integers Z together with ordinary multiplication
is a monoid with identity element ¢ = 1 and the set of natural numbers
N ={1,2,3,...} together with ordinary addition is a semigroup. Note that
N together with + is not a monoid, however.

Here is an example of a monoid that is used in computer science. An
alphabet ¥ is a non-empty set whose elements are the letters of the
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alphabet. A word is a finite sequence of letters in . For a given alphabet
Yo, let 3 denote the collection of all words formed from the alphabet 3.

For w € ¥, the length of w denoted by [(w) is the number of letters
in w. The empty word e is the (unique) word of length 0 in X7j. We
endow X with a binary operation 3§ x ¥j — X called concatenation.
Concatenation (sometimes denoted as *’) is defined as x -y = wxy, for
x,y € Xj. As the reader can easily verify, £ together with concatenation
is a monoid; the identity element is the empty word.

For example if ¥y = {a, b}, then {a,b}* consists of all finite sequences
of a’s and b’s. The word = = abbab € {a,b}” has length [(x) = 5. Moreover,
if y = bab, then -y = abbab - bab = abbabbab.

Definition 1.4. A group is a set G together with a binary operation
G x G — G for which

(i) the binary operation is associative,
(ii) there exists an element e € GG for which ea = a = ae, for all a € G,

(iii) for each a € &, there exists an element ¢ € G for which ca = e = ac.

An element e satisfying (ii) is an identity element for GG; an element
c satisfying (iii) is called an inverse element of a and is denoted by a~"'.

We note immediately that every group is a monoid. The converse is
false, of course (see §1.6, Exercise 6).

There are many familiar examples of groups encountered in mathemat-
ics. For example, the set of integers Z, together with ordinary addition +
is a group, 0 plays the role of e, and —a is the inverse of @ € Z. One eas-
ily shows that the set of rational numbers @ under ordinary addition and
the set of real numbers R under ordinary addition are groups. The set of
non-zero real numbers R* is a group under ordinary multiplication - with
e=1,and a ' = 1/a. A further example is the general linear group
G L, (R) consisting of invertible n x n matrices with entries in R, together
with matrix multiplication. Recalling some linear algebra, one has

iLy(R) ={A € Mat,(R) : det(A) # 0}.

In the case that n =1, GL;(R) = R*.

The order of a group G, denoted by |G|, is the number of elements in
G. If |G| is infinite, then G is an infinite group. All of the examples of
groups given above are infinite groups. A group G is finite if |G| is finite.

In what follows we give an example of a finite group.
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Let n,a be integers with n > 0. A residue of ¢ modulo n is an
integer r for which a = ng+r for some ¢ € Z. For instance, if n = 3, a = 8,
then 11 is a residue of 8 modulo 3 since 8 = 3(—1) + 11, but so is 2 since
8 = 3(2) + 2. The possible least non-negative residues of a modulo n are
0,1.2,...,n — 1. The least non-negative residue of @ modulo n is denoted
as amodn. For example, 8mod3 = 2, but also note that —3mod4 = 1
and 11mod 4 = 3mod4 = 3. We say that two integers a,b are congruent
modulo 7 if amodn = bmodn and we write @ = bmodn. Let a,n be
integers with n > 0. Then n divides a, denoted by n | a, if there exists an

integer & for which a = nk.

Proposition 1.1. Let a,b,n € Z, n > 0. Then a = bmodn if and only if
n|(a—b).

Proof. To prove the “only if” part, assume that @ = bmodn. Then
amodn = bmodn, so there exist integers [,m for which a = nm + r
and b = nl + »r with » = amodn = bmodn. Thus a — b = n(m —[). For
the “if” part, assume that @ — b = nk for some k. Then (nm + amodn) —
(nl+bmodn) = nk for some m,l € Z, so that n divides a mod n — bmod n.
Consequently, amodn — bmodn = 0, hence a = bmod n. ]

Proposition 1.1 can help us compute amodn. For instance
—14mod 17 = 3mod 17 = 3 since 17 | (—14 — 3). Likewise —226mod 17 =
12mod 17 = 12 since 17 | (—226 — 12).

For n > 0 consider the set J = {0,1,2,3,...,n—1} of least non-negative
residues modulo n. Note that a = amodn,Va € J. On J we define a binary
operation +,, as follows: for a,b € J,

amodn +, bmodn = (a + b) modn.

Then +,, gives .J the structure of a group, known as the group of residue
classes modulo n. We denote this group by Z,,; Z,, is a finite group of
order |Z,| = n. For example, Z; = {0,1,2,3} and one has 1 +, 2 = 3,
3+42=1, and so on.

One nice feature of a small finite group is that all possible group prod-
ucts can be arranged in a finite table in which the elements of the group
are listed across the top as labels of the columns and down the left side as
labels of the rows. For elements a,b in finite group G, the (a, b)th entry
in the table is ab. This table is the group table for finite group . For
instance, the group table for 7, is
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+4]0 1 2 3
o0 1 2 3
1 1 2 3 0
212 3 0 1
313 0 1 2

We can construct a new group from a finite set of groups. Let
S1,5%,...,8k be a finite collection of sets. Then the cartesian product
k

H S, is the collection of all k-tuples {(ay,as2,...,ax): a; € S;}.

=1
Proposition 1.2. Let G, i = 1,.... k., be a finite collection of groups.
k
Then the cartesian product HG,- ts a group under the binary operation
i=1
defined as
(ay,as, ... ax) - (by,ba,..., br) = (a1by,azbs, . .. arbi),

where a;b; is the image of (a;. b;) under the binary operation B; : G; x G; —
G of the group G;. 1 < i <k.

Proof. We show that the conditions of Definition 1.4 hold. Clearly the
binary operation on the cartesian product is associative; for an iden-

tity element we take ¢ = (e, eq,.... er) where e; is an identity in

G;. Lastly, for each k-tuple (ay,as,...,a;) one has (aj,as....,ap) ' =
—1 -1 =1

(@) "85 gamy a. ). O
k.

The group H G; of Proposition 1.2 is the direct product group.

As an illus;,ra,ti(m we consider the group Z x Z in which the binary
operation is given as (my,ma2)+ (n,n2) = (my +n1,ma+no). For another
example, we take Z5 x Z3; here for instance, (0, 1) + (1,2) = (1,0). Note
that |Zy x Z3| = 6.

In any group the identity and the inverse of an element are unique.

Proposition 1.3. Let G be a group. Then there exists a unique element e

for which ea = a = ae, and for each a € G, there exists a unique element

a=' for which a 'a =e¢=aa"".
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Proof. Suppose there are two identities e; and es. Then with e; acting
on the left, ejes = en. Also, with es acting on the right, ejes = e, Thus
e = es.

Now suppose there exist two inverses a; ' and a; ' for a given element
a € (. Then af‘a —e= (I,Q_Iu. Now multiplying on the right by (1.(1 vields
agt =gt g

Since (ab)(b"'a™') = e = (ab)(ab)"!, uniqueness of the inverse
vields the rule for inverses of products in a group, that is: (ab) ' =
b~ta=!

In a group the binary operation is by definition associative. It may or
may not be commutative.

Definition 1.5. A group for which the binary operation is commutative is
an abelian group.

For example, the residue class group Z,, is an abelian group, as are Z, Q,
and R.
The easiest example of a non-abelian group is GL3(R). In this group,

(01) Go) 7 (o) (o)

For a finite non-abelian group, we consider the 3rd order dihedral

for example, we have

group, which is denoted by Dj3. The elements of Dj are the six “symime-
tries” of the equilateral triangle AABC (Figure 1.1) and consist of three
clockwise rotations of 0°, 120°, and 240° about the center O of the trian-
gle, represented by the elements pg, p1. p2, together with three reflections
through the perpendicular lines {1, (5., {3, represented by the elements
Ji1. iz, fi3. vespectively. It is critical to realize that the rotations move the
vertices of the triangle, yet the perpendicular lines remain fixed and do not
move with the rotation of the triangle.



