SECOND EDITION

The Industrial Electronics Handbook

INTELLIGENT SYSTEMS

Edited by Bogdan M. Wilamowski J. David Irwin

The Industrial Electronics Handbook

INTELLIGENT SYSTEMS

Bogdan M. Wilamowski
J. David Irwin 人子 十二

MATLAB* is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB* software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB* software.

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2011 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper 10987654321

International Standard Book Number: 978-1-4398-0283-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Intelligent systems / editors, Bogdan M. Wilamowski and J. David Irwin.

"A CRC title."

Includes bibliographical references and index.

ISBN 978-1-4398-0283-0 (alk. paper)

1. Intelligent control systems. 2. Neural networks (Computer science) I. Wilamowski, Bogdan M. II. Irwin, J. David, 1939- III. Title.

TJ217.5.I54477 2010

006.3'2--dc22

2010020581

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

The Industrial Electronics Handbook

INTELLIGENT SYSTEMS

The Industrial Electronics Handbook

FUNDAMENTALS OF INDUSTRIAL ELECTRONICS

POWER ELECTRONICS AND MOTOR DRIVES

CONTROL AND MECHATRONICS

INDUSTRIAL COMMUNICATION SYSTEMS

INTELLIGENT SYSTEMS

The Electrical Engineering Handbook Series

Series Editor

Richard C. Dorf

University of California, Davis

Titles Included in the Series

The Avionics Handbook, Second Edition, Cary R. Spitzer

The Biomedical Engineering Handbook, Third Edition, Joseph D. Bronzino

The Circuits and Filters Handbook, Third Edition, Wai-Kai Chen

The Communications Handbook, Second Edition, Jerry Gibson

The Computer Engineering Handbook, Vojin G. Oklobdzija

The Control Handbook, Second Edition, William S. Levine

CRC Handbook of Engineering Tables, Richard C. Dorf

Digital Avionics Handbook, Second Edition, Cary R. Spitzer

The Digital Signal Processing Handbook, Vijay K. Madisetti and Douglas Williams

The Electric Power Engineering Handbook, Second Edition, Leonard L. Grigsby

The Electrical Engineering Handbook, Third Edition, Richard C. Dorf

The Electronics Handbook, Second Edition, Jerry C. Whitaker

The Engineering Handbook, Third Edition, Richard C. Dorf

The Handbook of Ad Hoc Wireless Networks, Mohammad Ilyas

The Handbook of Formulas and Tables for Signal Processing, Alexander D. Poularikas

Handbook of Nanoscience, Engineering, and Technology, Second Edition,

William A. Goddard, III, Donald W. Brenner, Sergey E. Lyshevski, and Gerald J. Iafrate

The Handbook of Optical Communication Networks, Mohammad Ilyas and

Hussein T. Mouftah

The Industrial Electronics Handbook, Second Edition, Bogdan M. Wilamowski and I. David Irwin

The Measurement, Instrumentation, and Sensors Handbook, John G. Webster

The Mechanical Systems Design Handbook, Osita D.I. Nwokah and Yidirim Hurmuzlu

The Mechatronics Handbook, Second Edition, Robert H. Bishop

The Mobile Communications Handbook, Second Edition, Jerry D. Gibson

The Ocean Engineering Handbook, Ferial El-Hawary

The RF and Microwave Handbook, Second Edition, Mike Golio

The Technology Management Handbook, Richard C. Dorf

Transforms and Applications Handbook, Third Edition, Alexander D. Poularikas

The VLSI Handbook, Second Edition, Wai-Kai Chen

Preface

The field of industrial electronics covers a plethora of problems that must be solved in industrial practice. Electronic systems control many processes that begin with the control of relatively simple devices like electric motors, through more complicated devices such as robots, to the control of entire fabrication processes. An industrial electronics engineer deals with many physical phenomena as well as the sensors that are used to measure them. Thus, the knowledge required by this type of engineer is not only traditional electronics but also specialized electronics, for example, that required for high-power applications. The importance of electronic circuits extends well beyond their use as a final product in that they are also important building blocks in large systems, and thus the industrial electronics engineer must also possess knowledge of the areas of control and mechatronics. Since most fabrication processes are relatively complex, there is an inherent requirement for the use of communication systems that not only link the various elements of the industrial process but are also tailor-made for the specific industrial environment. Finally, the efficient control and supervision of factories require the application of intelligent systems in a hierarchical structure to address the needs of all components employed in the production process. This need is accomplished through the use of intelligent systems such as neural networks, fuzzy systems, and evolutionary methods. The Industrial Electronics Handbook addresses all these issues and does so in five books outlined as follows:

- 1. Fundamentals of Industrial Electronics
- 2. Power Electronics and Motor Drives
- 3. Control and Mechatronics
- 4. Industrial Communication Systems
- 5. Intelligent Systems

The editors have gone to great lengths to ensure that this handbook is as current and up to date as possible. Thus, this book closely follows the current research and trends in applications that can be found in *IEEE Transactions on Industrial Electronics*. This journal is not only one of the largest engineering publications of its type in the world, but also one of the most respected. In all technical categories in which this journal is evaluated, it is ranked either number 1 or number 2 in the world. As a result, we believe that this handbook, which is written by the world's leading researchers in the field, presents the global trends in the ubiquitous area commonly known as industrial electronics.

An interesting phenomenon that has accompanied the progression of our civilization is the systematic replacement of humans by machines. As far back as 200 years ago, human labor was replaced first by steam machines and later by electrical machines. Then approximately 20 years ago, clerical and secretarial jobs were largely replaced by personal computers. Technology has now reached the point where intelligent systems are replacing human intelligence in decision-making processes as well as aiding in the solution of very complex problems. In many cases, intelligent systems are already outperforming human activities. The field of computational intelligence has taken several directions. Artificial neural networks are not only capable of learning how to classify patterns, for example, images or sequences of

xii Preface

events, but they can also effectively model complex nonlinear systems. Their ability to classify sequences of events is probably more popular in industrial applications where there is an inherent need to model nonlinear system behavior—as an example, measuring the system parameters that are easily obtainable and using a neural network to evaluate parameters that are difficult to measure but essential for system control. Fuzzy systems have a similar application. Their main advantage is their simplicity and ease of implementation. Various aspects of neural networks and fuzzy systems are covered in Parts II and III. Part IV is devoted to system optimization, where several new techniques including evolutionary methods, swarm, and ant colony optimizations are covered. Part V is devoted to several applications that deal with methods of computational intelligence.

For MATLAB® and Simulink® product information, please contact

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com Web: www.mathworks.com

Acknowledgments

The editors wish to express their heartfelt thanks to their wives Barbara Wilamowski and Edie Irwin for their help and support during the execution of this project.

Editorial Board

Mo-Yuen Chow

North Carolina State University Raleigh, North Carolina

Jósef Korbicz

University of Zielona Góra Zielona Góra, Poland

Kim Fung Man

City University of Hong Kong Kowloon, Hong Kong

Milos Manic

University of Idaho, Idaho Falls Idaho Falls, Idaho

Witold Pedrycz

University of Alberta Edmonton, Alberta, Canada

Ryszard Tadeusiewicz

AGH University of Science and Technology Krakow, Poland

Paul J. Werbos

National Science Foundation Arlington, Virginia

Gary Yen

Oklahoma State University Stillwater, Oklahoma

Editors

Bogdan M. Wilamowski received his MS in computer engineering in 1966, his PhD in neural computing in 1970, and Dr. habil. in integrated circuit design in 1977. He received the title of full professor from the president of Poland in 1987. He was the director of the Institute of Electronics (1979–1981) and the chair of the solid state electronics department (1987–1989) at the Technical University of Gdansk, Poland. He was a professor at the University of Wyoming, Laramie, from 1989 to 2000. From 2000 to 2003, he served as an associate director at the Microelectronics Research and Telecommunication Institute, University of Idaho, Moscow, and as a professor in the electrical and computer engineering department and in the computer science department at the same university. Currently, he is the director

of ANMSTC—Alabama Nano/Micro Science and Technology Center, Auburn, and an alumna professor in the electrical and computer engineering department at Auburn University, Alabama. Dr. Wilamowski was with the Communication Institute at Tohoku University, Japan (1968–1970), and spent one year at the Semiconductor Research Institute, Sendai, Japan, as a JSPS fellow (1975–1976). He was also a visiting scholar at Auburn University (1981–1982 and 1995–1996) and a visiting professor at the University of Arizona, Tucson (1982–1984). He is the author of 4 textbooks, more than 300 refereed publications, and has 27 patents. He was the principal professor for about 130 graduate students. His main areas of interest include semiconductor devices and sensors, mixed signal and analog signal processing, and computational intelligence.

Dr. Wilamowski was the vice president of the IEEE Computational Intelligence Society (2000–2004) and the president of the IEEE Industrial Electronics Society (2004–2005). He served as an associate editor of IEEE Transactions on Neural Networks, IEEE Transactions on Education, IEEE Transactions on Industrial Electronics, the Journal of Intelligent and Fuzzy Systems, the Journal of Computing, and the International Journal of Circuit Systems and IES Newsletter. He is currently serving as the editor in chief of IEEE Transactions on Industrial Electronics.

Professor Wilamowski is an IEEE fellow and an honorary member of the Hungarian Academy of Science. In 2008, he was awarded the Commander Cross of the Order of Merit of the Republic of Poland for outstanding service in the proliferation of international scientific collaborations and for achievements in the areas of microelectronics and computer science by the president of Poland.

xviii Editors

J. David Irwin received his BEE from Auburn University, Alabama, in 1961, and his MS and PhD from the University of Tennessee, Knoxville, in 1962 and 1967, respectively.

In 1967, he joined Bell Telephone Laboratories, Inc., Holmdel, New Jersey, as a member of the technical staff and was made a supervisor in 1968. He then joined Auburn University in 1969 as an assistant professor of electrical engineering. He was made an associate professor in 1972, associate professor and head of department in 1973, and professor and head in 1976. He served as head of the Department of Electrical and Computer Engineering from 1973 to 2009. In 1993, he was named Earle C. Williams Eminent Scholar and Head. From

1982 to 1984, he was also head of the Department of Computer Science and Engineering. He is currently the Earle C. Williams Eminent Scholar in Electrical and Computer Engineering at Auburn.

Dr. Irwin has served the Institute of Electrical and Electronic Engineers, Inc. (IEEE) Computer Society as a member of the Education Committee and as education editor of Computer. He has served as chairman of the Southeastern Association of Electrical Engineering Department Heads and the National Association of Electrical Engineering Department Heads and is past president of both the IEEE Industrial Electronics Society and the IEEE Education Society. He is a life member of the IEEE Industrial Electronics Society AdCom and has served as a member of the Oceanic Engineering Society AdCom. He served for two years as editor of IEEE Transactions on Industrial Electronics. He has served on the Executive Committee of the Southeastern Center for Electrical Engineering Education, Inc., and was president of the organization in 1983–1984. He has served as an IEEE Adhoc Visitor for ABET Accreditation teams. He has also served as a member of the IEEE Educational Activities Board, and was the accreditation coordinator for IEEE in 1989. He has served as a member of numerous IEEE committees, including the Lamme Medal Award Committee, the Fellow Committee, the Nominations and Appointments Committee, and the Admission and Advancement Committee. He has served as a member of the board of directors of IEEE Press. He has also served as a member of the Secretary of the Army's Advisory Panel for ROTC Affairs, as a nominations chairman for the National Electrical Engineering Department Heads Association, and as a member of the IEEE Education Society's McGraw-Hill/Jacob Millman Award Committee. He has also served as chair of the IEEE Undergraduate and Graduate Teaching Award Committee. He is a member of the board of governors and past president of Eta Kappa Nu, the ECE Honor Society. He has been and continues to be involved in the management of several international conferences sponsored by the IEEE Industrial Electronics Society, and served as general cochair for IECON'05.

Dr. Irwin is the author and coauthor of numerous publications, papers, patent applications, and presentations, including *Basic Engineering Circuit Analysis*, 9th edition, published by John Wiley & Sons, which is one among his 16 textbooks. His textbooks, which span a wide spectrum of engineering subjects, have been published by Macmillan Publishing Company, Prentice Hall Book Company, John Wiley & Sons Book Company, and IEEE Press. He is also the editor in chief of a large handbook published by CRC Press, and is the series editor for Industrial Electronics Handbook for CRC Press.

Dr. Irwin is a fellow of the American Association for the Advancement of Science, the American Society for Engineering Education, and the Institute of Electrical and Electronic Engineers. He received an IEEE Centennial Medal in 1984, and was awarded the Bliss Medal by the Society of American Military Engineers in 1985. He received the IEEE Industrial Electronics Society's Anthony J. Hornfeck Outstanding Service Award in 1986, and was named IEEE Region III (U.S. Southeastern Region) Outstanding Engineering Educator in 1989. In 1991, he received a Meritorious Service Citation from the IEEE Educational Activities Board, the 1991 Eugene Mittelmann Achievement Award from the IEEE Industrial Electronics Society, and the 1991 Achievement Award from the IEEE Education Society. In 1992, he was named a Distinguished Auburn Engineer. In 1993, he received the IEEE Education Society's McGraw-Hill/Jacob Millman Award, and in 1998 he was the recipient of the

Editors xix

IEEE Undergraduate Teaching Award. In 2000, he received an IEEE Third Millennium Medal and the IEEE Richard M. Emberson Award. In 2001, he received the American Society for Engineering Education's (ASEE) ECE Distinguished Educator Award. Dr. Irwin was made an honorary professor, Institute for Semiconductors, Chinese Academy of Science, Beijing, China, in 2004. In 2005, he received the IEEE Education Society's Meritorious Service Award, and in 2006, he received the IEEE Educational Activities Board Vice President's Recognition Award. He received the Diplome of Honor from the University of Patras, Greece, in 2007, and in 2008 he was awarded the IEEE IES Technical Committee on Factory Automation's Lifetime Achievement Award. In 2010, he was awarded the electrical and computer engineering department head's Robert M. Janowiak Outstanding Leadership and Service Award. In addition, he is a member of the following honor societies: Sigma Xi, Phi Kappa Phi, Tau Beta Pi, Eta Kappa Nu, Pi Mu Epsilon, and Omicron Delta Kappa.

Contributors

Sabeur Abid

Ecole Superieure Sciences et Techniques Tunis University of Tunis Tunis, Tunisia

Filipe Alvelos

Algoritmi Research Center and Department of Production and Systems University of Minho Braga, Portugal

Christian Blum

ALBCOM Research Group Universitat Politècnica de Catalunya Barcelona, Spain

Oleg Boulanov

Department of Electrical and Computer Engineering University of Calgary Calgary, Alberta, Canada

Tak Ming Chan

Algoritmi Research Center University of Minho Braga, Portugal

Mo-Yuen Chow

Department of Electrical and Computer Engineering North Carolina State University Raleigh, North Carolina

Kun Tao Chung

Department of Electrical and Computer Engineering Auburn University Auburn, Alabama

Carlos A. Coello Coello

Departamento de Computación Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Mexico City, Mexico

Nicholas Cotton

Panama City Division Naval Surface Warfare Centre Panama City, Florida

Mehmet Önder Efe

Department of Electrical and Electronics Engineering Bahçeşehir University İstanbul, Turkey

Åge J. Eide

Department of Computing Science Ostfold University College Halden, Norway

Farhat Fnaiech

Ecole Superieure Sciences et Techniques Tunis University of Tunis Tunis, Tunisia

Nader Fnaiech

Ecole Superieure Sciences et Techniques Tunis University of Tunis Tunis, Tunisia xxii Contributors

Hani Hagras

The Computational Intelligence Centre University of Essex Essex, United Kingdom

Barrie W. Jervis

Department of Electrical Engineering Sheffield Hallam University Sheffield, United Kingdom

Józef Korbicz

Institute of Control and Computation Engineering University of Zielona Góra Zielona Góra, Poland

Sam Kwong

Department of Computer Science City University of Hong Kong Kowloon, Hong Kong

Thomas Lindblad

Physics Department Royal Institute of Technology Stockholm, Sweden

Manuel López-Ibáñez

IRIDIA

Université Libre de Bruxelles Brussels, Belgium

Kim Fung Man

Department of Electronic Engineering City University of Hong Kong Kowloon, Hong Kong

Milos Manic

Department of Computer Science University of Idaho, Idaho Falls Idaho Falls, Idaho

Michael Margaliot

School of Electrical Engineering Tel Aviv University Tel Aviv, Israel

Marcin Mrugalski

Institute of Control and Computation Engineering University of Zielona Góra Zielona Góra, Poland

Andrzej Obuchowicz

Institute of Control and Computation Engineering University of Zielona Góra Zielona Góra, Poland

Teresa Orlowska-Kowalska

Institute of Electrical Machines, Drives and Measurements Wroclaw University of Technology Wroclaw, Poland

Guy Paillet

General Vision Inc. Petaluma, California

Witold Pedrycz

Department of Electrical and Computer Engineering University of Alberta Edmonton, Alberta, Canada

and

System Research Institute Polish Academy of Sciences Warsaw, Poland

Ioannis Pitas

Department of Informatics Aristotle University of Thessaloniki Thessaloniki, Greece

Valeri Rozin

School of Electrical Engineering Tel Aviv University Tel Aviv, Israel

Vlad P. Shmerko

Electrical and Computer Engineering Department University of Calgary Calgary, Alberta, Canada

Elsa Silva

Algoritmi Research Center University of Minho Braga, Portugal Contributors xxiii

Adam Slowik

Department of Electronics and Computer Science Koszalin University of Technology Koszalin, Poland

Adrian Stoica

Jet Propulsion Laboratory Pasadena, California

Krzysztof Szabat

Institute of Electrical Machines, Drives and Measurements Wroclaw University of Technology Wroclaw, Poland

Ryszard Tadeusiewicz

Automatic Control AGH University of Science and Technology Krakow, Poland

Kit Sang Tang

Department of Electronic Engineering City University of Hong Kong Kowloon, Hong Kong

Anastasios Tefas

Department of Informatics Aristotle University of Thessaloniki Thessaloniki, Greece

J.M. Valério de Carvalho

Algoritmi Research Center and Department of Production and Systems University of Minho Braga, Portugal

Juyang Weng

Department of Computer Science and Engineering Michigan State University East Lansing, Michigan

Paul J. Werbos

Electrical, Communications and Cyber Systems Division National Science Foundation Arlington, Virginia

Bogdan M. Wilamowski

Department of Electrical and Computer Engineering Auburn University Auburn, Alabama

Tiantian Xie

Department of Electrical and Computer Engineering Auburn University Auburn, Alabama

Ronald R. Yager

Iona College New Rochelle, New York

Svetlana N. Yanushkevich

Department of Electrical and Computer Engineering University of Calgary Calgary, Alberta, Canada

Gary Yen

School of Electrical and Computer Engineering Oklahoma State University Stillwater, Oklahoma

Hao Yu

Department of Electrical and Computer Engineering Auburn University Auburn, Alabama

Contents

Pref	acexi
Acknowledgmentsxiii	
Edit	orial Boardxv
Edit	orsxvii
Con	tributorsxxi
PA	RT I Introductions
1	Introduction to Intelligent Systems
2	From Backpropagation to Neurocontrol
3	Neural Network–Based Control
4	Fuzzy Logic-Based Control Section
PA	RT II Neural Networks
5	Understanding Neural Networks
6	Neural Network Architectures
7	Radial-Basis-Function Networks
8	GMDH Neural Networks