Mass Spectrometry-Volume 5

Specialist Periodical Reports

The Chemical Society

Mass Spectrometry

Volume 5

A Review of the Recent Literature Published between July 1976 and June 1978

Senior Reporter

R. A. W. Johnstone, Department of Organic Chemistry, University of Liverpool

Reporters

- T. W. Bentley, University College of Wales, Swansea
- J. H. Bowie, University of Adelaide, Australia
- C. J. W. Brooks, University of Glasgow
- J. D. Eland, Argonne National Laboratory, Illinois
- D. E. Games, University College of Wales, Cardiff
- I. Horman, Nestle Research Laboratories, Switzerland
- A. McCormick, A.W.R.E., Aldermaston
- F. A. Mellon, University of Sussex
- B. S. Middleditch, University of Houston, Texas
- B. J. Millard, Institute of Neurology, University of London
- C. T. Pillinger, University of Cambridge
- M. E. Rose. University of Liverpool
- S. Safe, College of Guelph, Ontario
- T. R. Spalding, University College Cork

The Chemical Society
Burlington House, London, W1V 0BN

British Library Cataloguing in Publication Data

Mass spectrometry.

(Chemical Society, Specialist periodical reports) Vol. 5

- 1. Mass Spectrometry
- I. Johnstone, Robert Alexander Walker
- II. Series

543'.33 OD96.M3

ISBN 0-85186-298-5 ISSN 0305-9987

Copyright © 1979
The Chemical Society

All Rights Reserved
No part of this book may be reproduced or transmitted
in any form or by any means – graphic, electronic,
including photocopying, recording, taping or
information storage and retrieval systems – without
written permission from the Chemical Society

Set in Times on Linotron and printed offset by J. W. Arrowsmith Ltd., Bristol, England Made in Great Britain

Foreword

The present volume with its decennial index is perhaps a suitable occasion to mark the retirement of several stalwarts from this series of Specialist Reports with an expression of sincere gratitude for the efforts they have put into their past and present contributions. In this respect, I surely speak on behalf of all our readership and not just myself. The diligence, flair, and sheer hard work necessary to produce a readable, scientifically accurate coverage of specialists' research areas within the short time-limits set is never financially over-rewarding but our contributors have the benefit of knowing the value of the service they provide to practitioners of mass spectrometry is acknowledged, if sometimes only silently or tacitly.

Blair McMaster's work has taken him largely out of mass spectrometry and, in the interim, I have acted as stand-in until Professor T. Baer takes over the chapter on theoretical aspects in Volume 6. It remains to be seen whether I have exacted the same standards from myself as those set for the other contributors. John Wilson's regular feature on ionization methods has ended and been incorporated mostly into Chapters 1, 2, and 5. The mantle of Charles Brooks and Brian Middleditch has been passed to Fred Mellon who moves on from computers to report gas chromatography—mass spectrometry. His place for Volume 6 is taken by Don Sedgwick who will extend the review on computer applications to include the increasingly important use of microprocessor technology in mass spectrometry. Trevor Spalding has landed a tenured appointment and asked to be relieved as a contributor, at least until he has settled into his new job. John Bowie's contribution on functional group analysis will be dropped by mutual agreement but I am pleased to record he intends continuing to write on negative ion work.

The coverage of mass spectrometry by this Specialist Report, restricted as it is in size, has been necessarily somewhat selective. I am conscious of the inadequate reporting of several developed and developing areas in mass spectrometry which are important but of less widespread general interest. To overcome this inadequacy, the inclusion of brief, special reviews will be continued and extended, particularly as they seem to be well-received. There are four in this Volume, on photoelectron–photoion coincidence spectroscopy and on uses of mass spectrometry in geochemistry, environmental sciences, and food technology. For Volume 6, it is hoped to include features on secondary ion emission and ion beam experiments.

Our readers may be interested to know the Chemical Society gathers the wide-flung reviews of these Reports and forwards them to me, no doubt to make sure I read them and for my self-mortification, sometimes on behalf of savaged contributors. It is rewarding to find that most reviewers are constructive and endeavour to help by highlighting parts of the Report they find pleasing or disappointing but, more than that, by suggesting ways to achieve an improved coverage. It goes without saying that I welcome also comments from individuals either verbal or written.

iv Foreword

To close, I must express my heartfelt appreciation to the present reporters to Volume 5 for their erudite and well-produced typescripts which were a pleasure to edit. It is somewhat invidious to select individual contributors but three deserve special credit. Firstly, John Bowie gets the gold medal for the first contribution to reach me this year and secondly, the creditor for the wooden spoon shall be nameless but he can stir his chocolate with it. Finally, but not least, Malcolm Rose deserves a special vote of thanks for his painstaking work on assembling the cumulative index. Already, he has opted out of the next one due in 1989!

R. A. W. JOHNSTONE

Contents

Chapter	1 Theory and Energetics <i>By R. A. W. Johnstone</i>	.1
:	Other Heats of Formation and Bond Dissociation Energies	1 3 12 15 16
2	Emission of Electromagnetic Radiation Kinetic Energy Release Distributions Photon Effects other than Photoelectron-Photoion Coincidence	20 20 23 28
3	Mass Spectrometric Investigations	42 42 48
4	4 Statistical Methods of Predicting Rate Constants	51
4	5 Ion Mobilities, Interaction Potentials, and Ion/Molecule Rate Constants	57
	6 Applications of Molecular Orbital Theory	62
Chapter 2	2 Structure, Energetics, and Mechanism in Mass Spectrometry By T. W. Bentley	64
	1 Introduction	64
4	2 Energetics of Fragmentation	65
	3 Ion Kinetic Energies	68
	4 Collisional Activation	70
!	5 Molecular Orbital Calculations	71
	6 Substituent Effects	74
,	Hydrocarbons C, H, and O Species C, H, and S Species	76 76 83 85

8 Ga	s-phase Ionic Equilibria	87
	otoelectron–Photoion Coincidence Spectros- copy v J. H. D. Eland	91
1 His	storical Summary	91
2 Tee	chniques and Types of Measurement	92
3 Re	sults: Diatomic and Triatomic Molecular Ions	94
4 Sm	all Polyatomic Ions	95
Me	ethane and Derivatives	95
	efins	96
Ca	rbonyl Compounds	97
5 C ₆ N	N ₆ ⁺ Isomers and Related Ions	98
	mputerized Data Acquisition and Interpretation F. A. Mellon	100
1 Int	roduction	100
2 Da	ta Acquisition and Computer Control	101
	tem Interface and Configuration	101
-	Electronic Recording	101
S	Satellite, Multi-instrument, and Off-line Systems	103
F	Photoplate Systems	103
	On-line Computer Control	103
Ace	curacy of Mass and Abundance Measurements	105
	erpretation of Mass Spectra by Pattern Recognition,	107
	Artificial Intelligence, and Library Search Techniques mparative Evaluation of Techniques	107 107
	tern Recognition and Related Techniques	108
	tificial Intelligence	111
	orary Search	113
	romatography and Mass Spectrometry	116
		118
	scellaneous Applications sture Analysis	118
	tastable Peak Spectra	119
	t Ionization	119
	ization Efficiency	120
	topes	120
Chant T	and in Instance was	
18	rends in Instrumentation	121
В	A. McCormick	
1 In	troduction	121

Contents	vii

2	Sector Field Mass Spectrometers	122
	Single-stage Instruments	122
	Double-beam Instruments	124
	Multi-stage Sector Instruments	124
3	Time-of-flight Spectrometers	130
4	Quadrupole Mass Spectrometers	131
5	Ion Cyclotron Resonance Mass Spectrometers	134
6	Ionization Methods	135
	FI/FD	135
	Other Methods	138
7	Ion Detection and Measurement	139
Chapter 6	Gas Chromatography–Mass Spectrometry By C. J. W. Brooks and B. S. Middleditch	142
1	General Considerations	142
	Introduction	142
	Practical Aspects	142
	Selective Ion Monitoring	145
	Data Handling	146
	Current Trends	147
2	Applications	147
	Hydrocarbons	147
	Long-chain Compounds	148
	Prostaglandins and Related Compounds	151
	Sphingosine Derivatives	152
	Carbohydrates	154
	Oxygenated Terpenoids	157
	Steroids: (A) Reference Compounds	158
	Hydrocarbons	158
	Alcohols	159
	Other Steroids	160
	Steroids: (B) in Biological Material	160
	Sterols (including metabolism)	160
	Bile Acids and Bile Alcohols	163
	Hormonal Steroids and Metabolites in the Human	164
	Hormonal Steroids of Animals or Plants	166
	Metabolism of Exogenous Steroids	167
	Amines: Reference Compounds and Reaction Products	168
	Amino-acids and Peptides	169
	Natural Metabolites and Drugs: (A) Reference Compounds	172
	Natural Metabolites and Drugs: (B) in Biological Material	173
	Non-nitrogenous Compounds	173
	Nitrogenous Compounds	175
	Insect Phermones and Other Secretions	177

viii Contents

I	Food Flavours and Aromas	179
I	Pesticides and Pollutants	181
(Organic Geochemistry	183
	Miscellaneous	184
	viscentalicous	104
18	Drug Metabolism <i>By B. J. Millard</i>	186
	Introduction	186
	Qualitative Mass Spectrometry	187
		187
	Reference Compounds	187
	Electron Impact	
	Chemical Ionization	190
	Metabolites Separated by Liquid Chromatography	190
r	Metabolites Separated by Thin-layer Chromatography	191
3 (Quantitative Mass Spectrometry	198
I	Direct Probe Methods	198
5	Selected Ion Recording via G.CM.S.	199
	No Internal Standard	200
	Internal Standards Yielding a Different Ion	200
	Homologous Internal Standards Yielding the Same Ion	203
	Stable-isotope-labelled Analogues as Internal Standards	204
	Stable isotope labelled / malogues as internal standards	201
	Mass Spectrometry in Food Science By I. Horman	211
40.0	Introduction	211
	Introduction	212
	Multicomponent Mixtures	212
2	The State of the Art	212
	Problems and Specific Difficulties	213
3	Analytical Techniques	214
	Gas Chromatography–Mass Spectrometry	214
	The survey of th	215
	Ion Monitoring Methods	
	Other Ionization Techniques	216
	Analysis of Volatiles	216
	Aroma and Flavour Formation During Ripening or Cooking Model Systems Used to Study Thermal Genesis of	217
	Aroma Compounds	219
	Volatiles of Fruits, Vegetables, and Non-alcoholic Beverages	220
	Alcoholic Beverages	222
	Dairy Produce	222
	Fats and Oils	222
	Meat, Fish, and Eggs	223

Contents ix

Essential Oils	224
Cereals	225
Water	225
5 Lipids	225
6 Solids	226
Polysaccharides and Carbohydrates	226
Polyphenols	227
Triterpenes and Steroids	227
Other Applications	227
7 Residues in Food Materials Resulting from Agriculture or	220
Technological Treatments Agricultural Residues	228 228
Technological Residues	229
Food Additives	230
Environmental Residues	230
8 Secondary Metabolites from Fungal Spoilage of Crops	230
9 Future Trends	232
Chapter 9 Environmental Applications of Mass Spec-	
trometry	234
By S. Safe	
1 Introduction	234
2 Halogenated Aromatic Industrial Pollutants	234
3 Halogenated Hydrocarbons	240
4 Halogenated Hydrocarbon Pesticides	241
5 Aromatic Hydrocarbons	244
6 Pesticides	246
7 Environmental Carcinogens	249
Chapter 10 Organic Geochemistry By C. T. Pillinger	250
1 Introduction	250
2 Methodology	251
3 Applications	253
Recent Sediments	253
Ancient Sediments	256
Kerogen	257
Oil/Petroleum	257 258
Others	238

X	Contents

4	Extraterrestrial Samples	259
5	Stable-isotopic Analysis	260
Chapter 11	Reactions of Organic Functional Groups: Positive and Negative Ions By J. H. Bowie	262
	I: Positive-ion Mass Spectrometry	262
1	Introduction	262
2	Hydrocarbons (including Hydrocarbon Cations) Alkanes, Alkenes, and Alkynes Aromatics	263263265
3	Halides	266
4	Alcohols and Phenols	267
5	Aldehydes and Ketones	268
6	Acids and Esters	269
7	Ethers and Peroxides	269
8	Amines, Amides, and Related Systems	270
9	The $-C=N-$, $-CN$, $N-N$, and $N=N$ Groups	271
10	The Oxime, Nitroso, and Nitro Groups	272
11	Heterocyclic Systems Three-, Four-, and Five-membered Rings Six-, Seven-, and Higher-membered Rings	272 272 274
12	Sulphur Compounds	276
13	Phosphorus Compounds	278
	II: Negative-ion Mass Spectrometry	279
1	Introduction	279
2	Techniques	279
3	Reactions of Negative Ions	281
0		
Chapter 12	Natural Products By D. E. Games	285
1	Introduction	285
2	Alkaloids	294
3	Aromatic Compounds and Oxygen Heterocycles	296

Contents xi

4	Isoprenoids	297
5	Steroids	299
6	Antibiotics	300
7	Nucleic Acid Components	302
8	Pyrrole Pigments	303
9	Carbohydrates	305
10	Amino-acids, Biogenic Amines, and Peptides Amino-acids and Biogenic Amines Peptides	307 307 308
11	Lipids	310
Chapter 13	Organometallic, Co-ordination, and Inorganic Compounds By T. R. Spaulding	312
1	Introduction	312
2	Main-Group Organometallics Group II Group III Compounds containing B—O, B—S, or B—N Bonds including Boron Heterocycles Compounds of Other Elements Group IV Silicon Compounds containing Si—O or Si—N Bonds Compounds of Other Elements Group V Phosphorus Compounds of Other Elements Group VI	313 313 314 314 316 316 317 318 320 321 323 324
3	Transition-metal Organometallics Ion/Molecule Reactions Metal Carbonyls, Carbonyl Hydrides, and Carbonyl Halides Metal Nitrosyls Transition-metal Cluster Compounds Compounds Containing Metal—Carbon Bonds Metal Alkyls and Related Compounds Carbene and Carbyne Compounds Allyl Complexes Compounds Containing Olefinic and Related Ligands Cyclopentadienyls and Related Complexes Ferrocenes and Related Compounds	325 325 326 327 328 328 328 329 330 331

xii Contents

Arene and Related Ligand Complexes	331
Complexes containing C ₇ and C ₈ Rings	332
Compounds with Bonds to Main-group Elements	333
Boron-containing Ligands	333
Nitrogen-containing Ligands	334
Phosphorus-containing Ligands	334
Main-group VI Ligands	334
4 Co-ordination and Metal-Organic Compounds	335
Compounds with Metal—Oxygen or Metal—Sulphur Bonds	335
β -Diketonato- and Related Complexes	335
Carboxylates and Related Compounds	336
Alkoxides and Related Compounds	337
Compounds with Metal—Nitrogen Bonds	338
Phosphorus-Nitrogen Compounds including Phosphonitrile	
Derivatives	338
Compounds with Metal-Oxygen (or Sulphur) and	
Metal—Nitrogen Bonds	339
5 Inorganic Compounds	341
Group I	341
Group III	34
Boron Hydrides and Related Compounds	34
Group IV	342
Group V	342
Group VI	343
Other Main Groups	343
Transition Metal Groups	343
6 Bibliography of Inorganic Compounds	344
Author Index	347
Cumulative Subject Index	379

Theory and Energetics

BY R. A. W. JOHNSTONE

This chapter covers theoretical developments in ion chemistry particularly with regard to application of theory to experimental work and the reflective effect of the latter on the development of theory. The last few years have seen renewed interest in the application of theory to the understanding of ion fragmentation and ion/neutral interactions. Frequently, developments in one area of mass spectrometry have spread over into others so that, although this chapter is divided into sections, extensive cross-references to other sections have had to be made to achieve overall coverage. For this reason, the division into sections has a strong flavour of convenience rather than strict logic but it is hoped the subject matter is more readily digestible and comprehensible treated this way. Photoelectron photoion coincidence spectroscopy is covered by the special review in Chapter 3 and is not dealt with as such here although results are referred to when necessary. The use of molecular orbital theory in mass spectrometry was comprehensively reviewed in Volume 4 of this series and, using criteria developed there, only the more significant applications and developments since then are reviewed in this Chapter.

1 Thermochemical Aspects

By well-known energy cycles, thermochemical data, such as heat of reaction and heat of formation, are interdependent in that one can be derived from others. Therefore, the division of this section into sub-sections describing for example, heats of formation, electron affinities, and proton affinities separately is artificial but has been done for convenience in dealing with the literature and for emphasizing particular points of interest.

A valuable compilation of thermochemical data for gaseous ions has appeared and a review on studies of metastable ions which lists advantages of their use as ions of low internal energy for determining thermochemical thresholds. ²

Free Energies of Reaction.—Total free energy changes in a reaction (ΔG^{\ominus}) are dealt with here in discussion of the derivation of heat of reaction (ΔH^{\ominus}) from equilibrium measurements on ion/molecule reactions. Fragmentation of isolated ions is dealt with in the section on RRKM theory. Free energy and heat of reaction

¹ H. M. Rosenstock, K. Draxl, B. W. Steiner, and J. T. Herron, J. Phys. Chem. Ref. Data, 1977, 6, Suppl. 1, 783 pp.

² R. K. Boyd and J. H. Beynon, Internat. J. Mass Spectrometry Ion Phys., 1977, 23, 163.

are linked through the equation, $\Delta G^\ominus = \Delta H^\ominus - T \Delta S^\ominus$, where T is temperature and ΔS^\ominus the change in entropy. Also, $-\Delta G^\ominus = RT \ln K$, in which K is the equilibrium constant for reaction. Usually, ΔS^\ominus is very small and put equal to zero so that, $-\Delta G^\ominus \cong \Delta H^\ominus$. An empirical correlation of exothermicity and activation energy is discussed later.³

Equilibrium constants determined from ion/molecule reactions may be in error through competitive reaction, differential ion losses, or slow arrival at equilibrium. Suitable methods and precautions for obtaining equilibrium constants from measurements in ICR cells have been discussed. A further source of error is the extraction and trapping fields in many types of apparatus which give a non-Maxwell-Boltzmann distribution to the ions, i.e. the ions have an effective temperature greater than ambient. This point is discussed further for ICR and SIFT techniques in the section on ion/molecule reaction and for ion mobilities in the section of that name. After emphasizing this possible error, a satisfactory way of removing it from time-resolved experiments has been described.⁵ Equilibrium constants are measured for different values of the ratio, E/P, in which E is the strength of the electric extraction field and P, the pressure of gas in the apparatus. The value of K and therefore ΔG^{\ominus} is obtained by extrapolation to E/P equal zero; this technique provided a heat of reaction for CO₂H⁺(CH₄, CO₂)CH₅⁺ in excellent agreement with other work using the flowing afterglow and ICR methods.

The common practice of putting $\Delta S^{\ominus} = 0$ for ion/molecule reactions has been examined and found satisfactory. Using the unimolecular reaction rate equation, $K = ZP \exp{(E/RT)}$, and making one or two assumptions, these authors showed that ΔS^{\ominus} could be estimated through the expression, $\Delta S^{\ominus} = R \ln{(Z_{\rm f}/Z_{\rm p})}$, where $Z_{\rm f}$, $Z_{\rm p}$ are the collision rate constants for forward and back reactions; these collision rate constants can be calculated (see section on ion/molecule reactions). Estimates of ΔS^{\ominus} for a number of reactions were shown to be small, of the right order of magnitude, and in the right direction.

Failure to ensure ions have been thermalized, i.e. have internal and kinetic energies corresponding to ambient temperatures, is a cause for concern when determining thermochemical quantities from equilibrium measurements. It has been shown that, at least for H⁺-transfer, the reaction, BH⁺+B \rightleftharpoons [BHB⁺]* \rightleftharpoons B+BH⁺, is so efficient that the BH⁺ ions are rapidly relaxed.⁷

The sign of ΔH^{\ominus} can be inferred in ICR experiments from the variation of the double-resonance signal with variation in the irradiating field strength. Thus, by use of bracketing reactions, upper and lower limits can be set for ΔH^{\ominus} ; this point is illustrated in the later section on proton affinities.

All of these thermochemical quantities are determined in the dilute gas-phase in which there are no solvent effects (heat of solvation, dielectric, viscocity, and so

³ M. Meot-Ner and F. H. Field, J. Amer. Chem. Soc., 1978, 100, 1356.

⁴ W. R. Davidson, M. T. Bowers, T. Su, and D. H. Aue, Internat. J. Mass Spectrometry Ion Phys., 1977, 24, 83

⁵ G. G. Meisels, R. K. Mitchum, and J. P. Freeman, J. Chem. Phys., 1976, 80, 2845.

⁶ S. G. Lias and P. Ausloos, J. Amer. Chem. Soc., 1977, 99, 4831.

⁷ T. B. McMahon and J. L. Beauchamp, J. Phys. Chem., 1977, 81, 593.

⁸ T. A. Lehman and M. M. Bursey, 'Ion Cyclotron Resonance', Wiley, New York, 1976.

on). However, solvent can greatly influence both the extent and nature of a reaction, with products changing and also rates by orders of magnitude from the gas-phase reaction. Further, ionic reactions in solution always have a gegenion which itself can modify the reaction. Bridging the gap between gas-phase and solution-phase has been attempted with considerable success. For example, the interaction of clusters of CH₃CN molecules with Na⁺, K⁺, Rb⁺, or Cs⁺ has been examined, with ΔG^{\oplus} , ΔH^{\oplus} , and ΔS^{\oplus} measured for such as reaction (1).

$$Na^{+}(CH_{3}CN)_{n-1} + CH_{3}CN \rightleftharpoons Na^{+}(CH_{3}CN)_{n}$$
(1)

Calculations based on simple electrostatics indicate that the weak interaction of a single CH₃CN molecule with a negative ion is due to the diffuse distribution of the positive end of its dipole over the carbon and hydrogen atoms. In contrast, the negative pole of the dipole, strongly localized on nitrogen, leads to strong interaction with a positive ion. Comparison of reaction (1) with a similar one for negative ions, shows that at n=5, the overall interaction with negative ions becomes slightly more favourable. In a similar piece of work, the differences between the stabilities of complexes of K^+ ions with nitrogen and oxygen bases were found to be very much smaller than the differences in the proton affinities of these bases.¹⁰ The exothermicity of hydration of $C_4H_9^+$ ions (2) changes as the number of solvent molecules increases. For n=1, the exothermicity was significantly lower than the values for n=2, 3.¹¹ The stability of the NO⁺N₂ ion cluster has been examined¹² from 178 to 273 K, giving ΔH^{\ominus} , ΔS^{\ominus} values and a bond-dissociation energy, $D_0(NO^+-N_2)=4.98\pm0.12$ kcal mol.⁻¹

$$C_4H_9(H_2O)_{n-1}^+ + H_2O \rightleftharpoons C_4H_9(H_2O)_n^+$$
 (2)

Electron Affinities.—Negative ion mass spectrometry has received considerably increased interest in the past few years, prompting the appearance of an extensive review¹³ and the issue of a third edition of a classic text-book on the subject.¹⁴ Because of this increased interest, it was thought opportune to discuss somewhat more fully than usual some of the more excicting advances in this area. As many of the techniques used in negative ion chemistry are similar to or identical to those used in positive ion chemistry, their fuller description in this section automatically implies less description in other later sections of this Chapter concerned with positive ions.

The simple reaction (3) requires an enthalpy of reaction equal to the difference in heats of formation of the negative ion (AB⁻) and the neutral (AB atom, radical, or molecule). This enthalpy, the electron affinity (EA), cannot be determined by direct electron attachment or exothermic electron transfer.

$$AB + e^- \rightarrow AB^-; \quad EA(AB) = \Delta H_f(AB) - \Delta H_f(AB^-)$$
 (3)

⁹ W. R. Davidson and P. Kebarle, J. Amer. Chem. Soc., 1976, 98, 6125.

¹⁰ W. R. Davidson and P. Kebarle, J. Amer. Chem. Soc., 1976, 98, 6133.

¹¹ K. Hiraoka and P. Kebarle, J. Amer. Chem. Soc., 1977, 99, 360.

¹² D. L. Turner and D. C. Conway, J. Chem. Phys., 1976, 65, 3944.

¹³ J. G. Dillard, Chem. Rev., 1973, 73, 589.

¹⁴ H. S. W. Massey, 'Negative Ions', Cambridge University Press, London, 1976.

For the particularly stable radical, (CF₃)₂NO, the corresponding negative ions were found to be about forty times longer lived than similar ions with similar numbers of degrees of freedom. 15 This relative stability of a negative ion formed by direct electron attachment was ascribed to completion of pairing of electrons in the molecular orbitals of the radical; SCF molecular orbital calculations supported this hypothesis. Attachment began at 0 eV and exhibited a maximum at 1.2 ± 0.1 eV Some limits to electron affinities were set by observed dissociative attachment reactions of (CF₃)₂NO. Reaction of a slow electron with a neutral (AB) frequency leads to dissociative resonance electron capture, whereby the electron is deposited in an anti-bonding molecular orbital, weakening bonds sufficiently and depositing sufficient energy to cause the ion to fragment as shown in reaction (4). Dissociative electron capture affords the basis of one method for determining electron affinities as in determination of these values for NaBO₂ and KBO_2 formed by electron ionization of complexes, $M_2BO_2F(M = Na, K, Cs)$, present in the vapour phase of mixtures of MF and MBO₂. 16 The other main methods used in mass spectrometry include the (usually) very accurate photodetachment of electrons from negative ions, emission of negative ions from surfaces bombarded with beams of neutral or charged species, charge-exchange between charged and uncharged species, and estimation of electron affinities from other measured thermochemical data or from ab initio molecular calculations.

$$AB + e^{-} \rightarrow [AB^{-}] \rightarrow A^{-} + B \tag{4}$$

Most ab initio molecular orbital calculations yield eigenvalues (ε) giving not only the energies of orbitals occupied by electrons but also the virtual energies of unoccupied or 'ghost' orbitals. By assuming no electron correlation or relaxation effects¹⁷ (Koopmans' theorem) on addition of an electron to the lowest unoccupied molecular orbital (LUMO), its eigenvalue may be equated to the electron affinity. Recently, such calculations have been carried out on simple molecules and led to an unexpected but simple relationship between electron affinity and permanent dipole moment: EA (calculated) = $-\varepsilon(LUMO) = 0.562 + 0.129\mu$ (calculated), where the electron affinity is expressed in electron-volts and the dipole moment, μ , in Debyes. ^{18,19} Advanced molecular orbital calculations with correct choice of basis sets yield values of dipole moments close to those observed experimentally and this relationship can be used to predict electron affinities from dipole moments or vice versa, although it appears to be valid only in the interval, $5 < \mu, < 10 \,\mathrm{D}$, and not so when $\mu \le (ca) 4.4 \,\mathrm{D}^{19}$ The correlation applies only to simple polar molecules like LiH and it would be useful to know whether or not a similar correlation holds for larger molecules with smaller dipole moments. These calculations have shown further that, barring exothermic dissociative electron attachment, all electronically non-degenerate polar molecules with $\mu > 1.625 \, \mathrm{D}$ will have positive electron affinities if the calculated Born-Oppenheimer

¹⁵ P. W. Harland, Internat. J. Mass Spectrometry Ion Phys., 1977, 25, 61.

¹⁶ V. E. Shevchenko, M. K. Iljin, O. T. Nikitin, and L. N. Sidorov, *Internat. J. Mass Spectrometry Ion Phys.*, 1976, 21, 279.

¹⁷ For a full discussion of molecular orbital theory in mass spectrometry see, B. N. McMaster in this series, Volume 4, ed., R. A. W. Johnstone, London Chemical Society, 1977, pp. 1—9.

¹⁸ K. D. Jordan, J. Chem. Phys., 1976, 65, 1215.

¹⁹ K. D. Jordan, J. Chem. Phys., 1977, 66, 3305.