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Series Preface

In the past decade, micro- and nano-technology have received unprecedented attention from governments
around the world, industry, the press, and the public in the hope to witness revolutionary discoveries,
which when translated to products could impact and transform our everyday lives. Following the success
of the semiconducting industry, and more recently the information technology industry, the expectation
for major nanotechnology breakthroughs, in the early part of the 21st century, is very high. However,
micro and nano technologies are less mature and rely on scientific advances to fulfil their promise. In this
regard, the development of model capabilities with predictive power is essential. Taking advantage of
modern supercomputers, in-silico modelling of bottom up fabrication of complex 3-D molecular systems,
prediction of mechanical, electrical, optical and thermal performance of new nanomaterials (e.g., metallic
and semiconducting nanowires and carbon nanotubes), and protein-protein interactions, just to mention a
few examples, is now possible. Such advances are poised to impact and accelerate developments in
materials, manufacturing, electronics, medicine and healthcare, energy, the environment and world
security. Books in this series focus in promoting the dissemination of such advances through scholarly
work of the highest quality. The Series is intended to serve researchers and scientists who wish to keep
abreast of advances in the expanding field of nano- and micro-technology, and as a resource for teachers
and students of specialized undergraduate and post-graduate courses.

The earlier book Fluid Properties at Nano/Meso Scale, by Peter Dyson, Rajesh Ransing, Paul Williams
and Rhodri Williams, provides a comprehensive numerical treatment of fluidics bridging the nanoscale,
where molecular physics is required as a guiding principle, and the microscale where macro continuum laws
operate. In this book Jinghong Fan takes us step by step through a wide range of multiscale modeling
methods and simulations of the solid state at the atomistic/nano/submicron scales and up through those
covering the micro/meso/macroscopic scale. The book is a timely and very useful presentation of modelling
approaches and algorithms with a reach to a broad set of problems in nano and biotechnologies. We are
introduced to the concept of material-cells that act as links to provide seamless, bottom-up and top-down,
transitions between neighbouring sub-scales. This can be used for a progressive understanding of crystal
lattice defects at the atomic scale, through to the dynamics of lattice dislocations, and then to macroscopic
properties such as plasticity and electrical resistivity. Other examples include a description of how an atom-
based continuum theory can be developed to understand hydrogen storage in carbon nanotubes, and how a
multiscale analysis of biological cell-surface interactions can aid the development of medical implants.

The pedagogic treatment given by Professor Fan to his book makes it suitable for inclusion in the final
year of undergraduate materials science courses in engineering and physical sciences, as well as in
computational graduate courses. The book as a whole should be considered as recommended reading for
researchers across a wide range of disciplines including materials science, mechanical engineering,
applied chemistry and applied physics.

Ronald Pethig Horacio D. Espinosa



Preface

Experience shows that in-depth understanding of material properties can result in great improvement to
products and promote the development of novel ones through synergies with other disciplines, for
example design. Therefore it is essential to recognize that materials are inherently of a hierarchical,
multiscale character. Properties should not be considered as monolithic quantities only at macroscopic
levels, as historically taught. Rather, important material properties can arise at a myriad of length scales
ranging from atomic to microscopic to mesoscopic to macroscopic. Computational simulation is also
recognized now as an essential element between theory and experimentation. These concepts comprise
the foundations of a new interdisciplinary field of study at the interface of engineering and material
science, which is referred to in the current literature as multiscale, multi-physics modeling and simulation.

Study of this field necessarily draws from foundations in electronic structure and atomistic-scale
phenomena, which are the basic building blocks of materials. Engineers and scientists are increasingly
drawn together by this unifying theme to develop multiscale methods to bridge the gaps between lower-
scale and macroscopic theory. This amalgam of fields demands a departure from classical solid mechanics
curricula in engineering colleges, as well as condensed matter curricula in the fields of physics and
chemistry. The need for curricula changes has been accelerated by recent advances in bio- and
nanotechnologies.

This book describes the author’s research experience in developing multiscale modeling methods
across atomistic/nano/submicron scales and micro/meso/macroscopic continuum analysis. Researchers
may be interested in how the concept of material neighbor-link cells can seamlessly transform information
bottom-up and top-down, how meso-cells link micro- and macroscopic scales, and how their connection
to dislocation theory can help investigate, for example, the size effects of cyclic plasticity and failure.

Wide applications of multiscale analysis are introduced in the book, including how atomistic-based
continuum theory can be developed for hydrogen storage of carbon nanotubes, how rate effects on
dislocation nucleation can be identified by atomistic analysis so its results can be compared with
laboratory testing, how new states can be predicted by using the nudged elastic band method to find
minimum energy path and saddle point to distinguish the large-scale separation of activation volume
which is the physical basis for the distinction between yield and creep and to find the mechanism for the
high strength and high ductility of nanostructured metals (e.g., nano-twinned copper), and how multiscale
problems can be extracted from biology, such as the multiscale analysis of cell/surface interactions for
medical implants.

Students and practitioners interested in these emerging ideas and approaches must develop an
appropriate background. This textbook is written with the intention of providing students with the
necessary background and advanced knowledge for multiscale modeling and simulation. The enthusiastic
feedback provided by undergraduate and graduate students at Alfred University, USA and Shanghai
University, China while using this book in a multiscale analysis course has been rewarding and
encouraging.



XXVi Preface

This book not only describes the background, principles, methods, and applications of various atomistic
and multiscale analyses, but also emphasizes new concepts and algorithmic developments through
various homeworks. Emphasis is placed on the development of simulation skills and use of software for
computer atomistic simulations. Associated with Chapter 10 is a Computational Simulation Laboratory
Infrastructure (CSLI). CSLI contains computer UNITS with one-to-one correspondence to the sections of
Chapter 10, which can be downloaded from the book’s website http://multiscale.alfred.edu and used for
computational lab practice through courses or self-learning.

My great thanks are due to Prof. D. McDowell of Georgia Institute of Technology, Dr. V. Yamakov of
National Institute of Aerospace, Prof. A. Clare of New York State College of Ceramics and Prof.
R. Loucks of the Physical Department of Alfred University for constructive suggestions. Thanks are also
due to Dr. M. Chinappi, Dr. A. Cao, Dr. Y. Chen, Mr. B. Wang, Mr. D. Parker, Mr. R. Stewert, Mr. H. Lu,
and Ms. L. He who have made contributions to various sections of the book. I would also like to express my
gratitude to my colleagues, Professors X. Peng, J. Zhang, X. Zeng, and B. Chen in China for their
extensive collaboration.

Jinghong Fan
Alfred Village, New York



Abbreviations

1D One-dimensional MC Monte Carlo
2D Two-dimensional MD Molecular dynamics
3D Three-dimensional MEAM Modified embedded atom method
ADP Angular dependent potential MEP Minimum energy path
BCC Body-centered cubic MEMS Micro electro-mechanical systems
CADD Couple atomistic analysis with MO Molecular orbital
discrete dislocation MS Molecular statics
CNT Carbon nanotube NAMD Nanoscale molecular dynamics
CSLI Computational simulation NEB Nudged elastic band
laboratory infrastructure NEMS Nano electro-mechanical systems
DC Direct coupling NLC Neighbor-link cell
DFT Density function theory PBC Periodic boundary condition(s)
DT Deformation twinning PDB Protein data bank
EAM Embedded atom method PES Potential energy surface
ESCM Embedded statistical coupling PSF Protein structure file
method PN Peierls-Nabarro
FCC Face-centered cubic QC Quasicontinuum method
FE Finite element QM Quantum mechanics
FEA Finite element analysis Reu Cutoff radius for interatomic
FEAt Finite element and atomistic model potential
FEM Finite element method RT Rice-Thomson or Room
GP Generalized particle dynamics temperature
GULP General Utility Lattice Program RVE Representative volume element
kMC Kinetic Monte Carlo (= Representative unit cell)
kg Boltzmann constant SCS Self-consistent scheme
HCP Hexagonal close-packed cell SOFC Solid oxide fuel cells
HF Hartree-Fock TB Tight binding
LAMMPS Large-scale atomic/molecular TST Transition state theory
massively parallel simulation U Total system energy
LCAO Linear combination of atomic VMD Visual molecular dynamics
orbitals \A% Velocity Verlet
LDA Local density approximation XRD X-ray diffraction
LF leap-frog YAG Y3Als0,, synthetic garnet
LJ Lennard-Jones YSZ Yttria stabilized zirconia
MAAD Macroscopic atomistic ab initio

dynamics
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