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Preface

A complex projective space P" is one of the most fundamental objects of
algebraic geometry. It provides a motivation for the study of an exception-
ally complicated object, the group Cry(C) of its birational automorphisms,
called a Cremona group of rank n. This book deals with the Cremona group
Cr3(C) of rank 3, describing the beautiful appearances of the icosahedral
group Us in it.

Most questions about the group Cr;(C) are easy to answer, because it
coincides with the group of biregular selfmaps of the projective line, which
is isomorphic to PGL2(C). The group Cry(C) is more complicated, since
it does contain non-biregular transformations. The first example of such
transformation, a circle inversion, was used by Apollonius of Perga to find a
circle that is tangent to three given circles. This group has been intensively
studied over the last two centuries, and many facts about it were estab-
lished. These range from classical results about generators of Cra(C) due
to Noether and Castelnuovo, and about relations between these generators
due to Gizatullin, up to the action of Cry(C) on an infinite-dimensional
hyperbolic space due to Cantat and Lamy, and complete classification of
finite subgroups due to Dolgachev and Iskovskikh.

The structure of the group Cr3(C) becomes way more complicated. It is
known that it does not admit any “reasonable” set of generators. This group
still resists any attempts to study its “global” structure, but one can access
it on the level of finite subgroups, which became possible thanks to recent
achievements in three-dimensional birational geometry. This accessibility is
based on a general observation that a birational action of a finite group G on
the projective space can be regularized, that is, replaced by a regular action
of this group on some more complicated rational variety. This transfers the
discussion into a rich world of varieties with large groups of symmetries.

At the moment it seems hardly possible to obtain a complete classi-
fication of finite subgroups in the Cremona group of rank 3. Nevertheless,
Prokhorov managed to find all finite simple subgroups of Crs3(C). He proved
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xii PREFACE

that the six groups s, PSLa(F7), ™As, SL2(F3g), A7, and PSpy(F3) are the
only non-abelian finite simple subgroups of Cr3(C). The former three of
these six groups actually admit embeddings to Cra(C), and the group 25 is
also realized as a subgroup of PGLy(C), while the latter three groups are
new three-dimensional artefacts.

Given a subgroup G of Cr3(C) (or of any other group) it is natural to ask
how many non-conjugate subgroups isomorphic to G are contained in the
group Cr3(C). It appears that methods of birational geometry fit very well
to answer such questions. They allow classifying all embeddings of SLy(Fg),
A, and PSp,(F3) into Cr3(C) up to conjugation (and actually there are
very few of them). As a next step one can construct many non-conjugate
embeddings of PSLy(F7) and g into Cr3(C), although a complete answer
is not known. The last remaining case that has not been studied yet is
the smallest non-abelian simple group, the icosahedral group 2s, which is
remarkable on its own. This book grew out of an attempt to fill this gap.

Being a group-theoretic counterpart of the icosahedron, the most sym-
metric of Platonic solids, the group 25 may boast one of the longest histories
of appearances in many areas of mathematics. A recognition of its signifi-
cance is a famous book by Klein, centered mostly around this group. In con-
nection with the discussed problem it behaves in an interesting way as well.
On the one hand, there are many rational threefolds admitting icosahedral
symmetry, including the projective space P? itself, the three-dimensional
quadric, and also classically studied Segre cubic, Igusa and Burkhardt quar-
tics, and the double cover of P® branched along Barth sextic surface. On the
other hand, it is currently unknown whether the corresponding icosahedral
subgroups of Cr3(C) are conjugate or not. Moreover, even the most powerful
method to study questions of this kind, the theory of birational rigidity, is
usually not applicable here. One of the goals of our book is to expand the
frontiers of its applicability, and in particular to present an example of an
2s-birationally rigid rational threefold.

At this point the second main character of the book enters the scene.
Among the rational threefolds with an action of the icosahedral group there
is one remarkable smooth variety, a quintic del Pezzo threefold V5. Apart
from having a rich group of symmetries, it has been studied from many
points of view such as explicit birational transformations, Kahler-Einstein
metrics, exceptional collections in derived categories and instanton bundles.
However, its 2As-equivariant geometry has never been explored. We focus on
this problem. We manage to describe explicitly a huge number of interesting
As-invariant subvarieties of Vs, including all 2As-orbits, a long list of low
degree curves, a pencil of invariant anticanonical K3 surfaces, and a mildly
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singular surface of general type that is a degree-five cover of the diagonal
Clebsch cubic surface. Furthermore, we discover two birational selfmaps
of V5 that commute with 2s-action and use them to describe the whole
group of As-birational automorphisms. Finally, we prove our main result:
the variety V5 is %As-birationally rigid, which means in particular that it
cannot be As-equivariantly birationally transformed to a Fano threefold
with mild singularities or a threefold fibered by rational curves or surfaces.
As an application, we return to the starting point of our journey and produce
three non-conjugate icosahedral subgroups in the Cremona group Cr3(C),
one of them arising from the threefold V5.

One thing that we find really impressive is that all our classification
results go hand in hand with each other, so that the purely birational objects
like explicit birational selfmaps help to classify invariant curves, and they
in turn help to deal with birational transformations.

The book has a clear motivational problem that is finally solved. While
working on it, we discovered many relevant facts that are interesting on
their own. Although some of them are not used in the proof of 2s-birational
rigidity of V5, we decided to include many of them, because we find them
at least equally interesting as the initial birational question. We believe
that these results can provide the same kind of aesthetic feeling as one that
possibly stood behind the classical works of Klein, Maschke, Blichfeldt, and
many others regarding symmetry groups. We hope that the reader will enjoy
and appreciate them as well.
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Notation and conventions

Unless explicitly stated otherwise, all varieties are assumed to be projective
and normal (but are allowed to be reducible). Everything is defined over
the field C of complex numbers. Of course, the field C can be replaced by
the reader’s favorite algebraically closed field of zero characteristic.

By curves and surfaces we mean algebraic varieties of pure dimension 1
and 2, respectively. In particular, they can be reducible but are always
reduced. By a conic we usually mean an irreducible plane curve of degree 2;
if we need to allow a reducible curve, we try to indicate this explicitly.

An irreducible divisor is a divisor whose support is an irreducible variety;
in particular, such a divisor is not necessarily prime. In many cases we do
not make a distinction between divisors and classes of divisors. For example,
given a Cartier divisor D on a variety X we may speak about D as an
element of the Picard group of X. If X is a variety with a fixed embedding
into P", and D is a divisor on X that is cut out by a hypersurface in P" of
degree d, then we often refer to D simply as a hypersurface of degree d (or
as quadric and cubic hypersurface for d = 2 and 3, respectively). By Kx we
always denote the canonical class of X. Throughout the book we use the
standard language of the singularities of pairs (see [30], [73], [T4]).

Given two cycles Z; and Zs on a variety X, we denote their intersection
cycle by Zy - Zy. If the latter is a zero-cycle, we will often use the same
notation for its degree.

A complete linear system on a variety X is a projective space parame-
terizing all divisors that are linearly equivalent to a given (Weil) divisor D
on X; we consider this notion only on normal varieties for simplicity. A
linear system is a projective subspace of some complete linear system. The
dimension of a linear system is the dimension of the corresponding pro-
jective space; in particular, pencils are linear systems of dimension 1. A
mobile linear system is a non-empty linear system that does not have fixed
components.

A projectivization P(V') of a vector space V is the projective space of

xvii
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all lines in V. A projectivization of a vector bundle is defined in a similar
way. The Hirzebruch surface F,, n > 0, is defined as the projectivization of
the vector bundle Op1 @ Op1(n) on PL. In particular, one has Fo = P! x P!,
and I is the blow-up of P? in one point.

Given a variety X and a sheaf F on X, we write H'(F) instead
of HY(X,F) for brevity. The same applies to the notation x(F) for the
Euler characteristic of F. We write xtop(X) for the topological Euler char-
acteristic of a variety X defined over C. By p,(C) we denote the arithmetic
genus 1 — x(O¢) of a curve C.

A plane curve singularity given locally by an equation z? = ¢! for
some n > 1 is called a singularity of type A,. A node is a singularity of
type Ay, i.e., one given locally by an equation 2% = y2. An ordinary cusp is
a singularity of type Ag, i.e., one given locally by an equation z? = y3. Also,
we say that a variety X has a singularity of type A, (or an ordinary cusp,
respectively) along a smooth subvariety D of codimension 1, if the singu-
larity locally in analytic topology looks like a product of D by a singularity
of type A, (or an ordinary cusp, respectively).

Let G be an algebraic group, and X be a variety with an action of G.
We say that a subvariety of X is G-irreducible, if it is G-invariant and is not
a union of two G-invariant subvarieties. If Y is a subvariety of X, we allow
a small abuse of terminology and speak about a G-orbit of Y meaning the
minimal G-invariant subvariety that contains Y. By a general point of ¥ we
mean a point in a dense open subset in Y. This does not make much sense as
an abstract notion, but is useful in some specific situations. In particular,
a statement that a stabilizer of a general point of Y in G is trivial does
make sense (it means the triviality of a stabilizer of a general point of every
irreducible component of Y), although there is no concept of a stabilizer of
a general point of Y. Similarly, we may say that a stabilizer of a general
point of Y is isomorphic to some (fixed) group F, although there may be
no way to identify stabilizers of points on different irreducible components
of Y (which applies even to the case when Y is G-irreducible). Also, one
can speak about a general point of Y being smooth. Suppose that Y is G-
irreducible, its general point is smooth, and Z is a G-invariant subvariety,
or a G-invariant divisor, or a G-invariant linear system on X. Then one can
define the multiplicity of Z at a general point of Y as a local intersection
index of Z with an appropriate number of general divisors from some very
ample linear system passing through the corresponding point; we will denote
the latter by multy (Z). When we speak about a general curve on a variety
without an action of a group, we mean a general curve of sufficiently large
degree with respect to some ample divisor.



NOTATION AND CONVENTIONS xix

If V is a vector bundle on X, we say that V' is G-invariant if for any
element g € G the pull-back ¢g*V is isomorphic to V; we say that V is a
G-equivariant vector bundle when we have chosen a lifting of the action
of G on X to V.

If U is a representation of a finite group G, we denote by UV the dual
representation of G. If X is a variety in P(U), we denote by XV the projec-
tively dual variety in P(U").

By p,, we denote a cyclic group of order m. A dihedral group of order m
is denoted by ®,,. Note that Dg = G3 and D4 = py X py. A symmetric
group of rank n is denoted by &,, and an alternating group of rank n is
denoted by 2,,. To describe particular elements of the groups &,, and 2,,, we
assume that these groups permute the numbers 1,...,n. Then we denote
by (i1 é2...1x) the cycle that sends i; to i3 and so on, up to i that is
sent to i1. By (i1,1.-.9%,.1) .- (i1 - - ik, ») We denote a composition of the
corresponding cycles.

If ' is some group, Gi,..., G, are subgroups of I', and g¢;,...,g, are
elements of ', then we denote by (Gy,...,Gs, 91, ..., 9r) the subgroup in T’
generated by G1,...,Gg and g1,...,gr.

Nearly every concept of algebraic geometry has its counterpart in the
situation when all objects involved are acted on by some finite group G.
If X is a variety with an action of G, we will sometimes say that X is a
G-variety. A rational map ¢: X --+ X’ between G-varieties X and X' is
G -equivariant, if for each element g of the group G the diagram

. Y, L
N
xX---" _.x

commutes. We say that ¢ is a G-rational map (or G-map), if there is an
automorphism u of the group G such that for each element g of the group G
the diagram

X—-=-=-=- - X'
gl lu(g)
X -~ o - X'

commutes. If a G-rational map ¢ is a birational map or a morphism, we
sometimes say that ¢ is a G-birational map or a G-morphism, respectively.
Similarly, if there exists a biregular G-morphism between two G-varieties,
we will say that they are G-biregular. The reader should be aware that
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this terminology is not universally accepted, and in many sources a G-map
means just a G-equivariant map. The maps that we call G-rational are
referred to as rational maps of G-varieties in [35, §3].

Note that any G-equivariant rational map is a G-map. Contrary to this,
if one takes two copies of a variety X with the same action of G, then
a non-central element g € G defines a G-morphism ¢g: X — X that is
not G-equivariant. On the other hand, any element ¢ € G defines a G-
equivariant morphism g: X — X, where the action on the second copy
of X is constructed as the initial action twisted by an inner automorphism
of G given by conjugation by g.

In general, if X’ is a variety with an action of G, and u is an automor-
phism of G, one can produce another action of G on X’ as the initial action
twisted by u. Denote the variety X’ with this twisted action by X. Let X
be some other variety with an action of G. We see that each G-rational map

¢: X -+ X'

gives rise to a G-equivariant rational map ¢,: X --» X, for a suitably
chosen automorphism u of the group G. Since the actions of G on X’ and X,
have many properties in common (say, G has fixed points on X’ if and only
if it has fixed points on X}, ), it will sometimes be more convenient for us to
work with G-equivariant maps, although in most cases our motivation will
come from studying G-rational maps.

We denote by Aut(X) the group of (biregular) automorphisms of X,
and by Aut®(X) the group of G-automorphisms of X. If X is irreducible,
we denote by Bir(X) the group of birational automorphisms of X, and
by Bir®(X) the group of G-birational automorphisms of X. We write
Cr,(C) for Bir(P").

Since the largest part of the book is devoted to geometry of one particu-
lar variety, and we have to keep track of some objects for a long time, we nat-
urally try to keep the same notation for such objects throughout the book.
For example, we denote the quintic del Pezzo threefold by Vs everywhere,
denote the surface in V5 that is the closure of the unique two-dimensional
PSL2(C)-orbit in V5 by .#, and denote the unique one-dimensional PSLy(C)-
orbit in V5 by ¥ (which is one of the two s-invariant rational curves of
degree 6 in V5) starting from Chapter 7 up to the very end. On the other
hand, in some special situations we may use one and the same symbol for
two different objects in non-overlapping parts of the book, even when in
one of the instances it is used for something basic for a long time; this hap-
pens when we feel that there is a similarity between the geometry of two
varieties, which justifies similar notation for different objects that behave
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in a similar manner in these two situations. For example, we also use the
symbol % to denote one of the two 2As-invariant rational curves of degree 6
in the Clebsch cubic surface. These similarities become most visible in The-
orems 6.3.18 and 13.6.1 classifying low degree 2s-invariant curves in the
Clebsch cubic surface and the quintic del Pezzo threefold, respectively. We
tried to do our best not to cause any confusion for the reader with this
convention.






