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Introductory Lecture.

R. A. SyuTH

Royal Radar Establishment - Malvern, Worcestershire

The purpose of this introductory lecture is to explain the arrangements of
the Semiconductor Course. To-day the field of semiconductor physics is an
extremely wide one and it is quite impossible to cover more than a small part
of it in a three-week’s course. I have therefore, tried to choose one or two of
the most important areas and to have them dealt with rather more thoroughly,
instead of trying to touch slightly on nearly everything. There are, naturally,
some unfortunate omissions. Some of these are inevitable because of lack of
space for them in the course. Others planned for inclusion have had to be dropped
since some of the lecturers had to call off at the last minute. Perhaps the most
serious omission is that there are now no lectures on the theory of recombination
processes. This important subject was included in the original plan for the
course, but two invited lectures dropped out and it has not been possible to
include it. Some mention of recombination processes will, however, be made
in other lectures. .

Most of the students attending the course have already a certain amount
of experience in semiconductor physics but a number, although experienced
physicists, are hoping to use the course as an advanced introduction to the
subject with a view, perhaps, to transferring their field of research activity
to this area. For those and for others less experienced, the course will open
with a series of lectures by Dr. L. PINCHERLE on the basic concepts of semi-
conductor physics and, in particular, on the energy-band structure of semi-
conductors. In this way we hope that all students on the course will
«learn the language» of the subject. Dr. PINCHERLE will then follow this
introduction with a few lectures on the more advanced aspects of the theory
and calculation of band structures. After all, the most fundamental of all
properties of semiconductors is their band structure. We have indeed nsed ma,riy
semiconductors in a practical way without detailed knowledge of their band
structure but no one could deny that many of the more interesting and subtle
developments with Ge and Si have come about since we knew the form of the
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energy bands, Our knowledge of the band structure of all but a very few
semiconductors is very rudimentary and one of the most needed developments
in the subject lies in finding more powerful methods, both theoretical and
experimental, for determining the form of the energy bands in some detail.
That such methods are beginning to open up is now clear and we shall later
in the course be concerned with the experimental approach to this subject,
particulalry through the use of optical and microwave techniques associated
with powerful magnetic fields. In addition, Dr. T. P. McLEAN will lecture
on the effective-mass approximation, a concept which forms the basis of most
theoretical discussions of the properties of semiconductors.

From an experimental point of view the most extensively studied and prac-
tically most important characteristics of semiconductors are their transport
properties and no course on semiconductors would make sense without a large
section being devoted to this subject. It is their unique properties as conductors
of electricity that have made semiconductors of such great importance techno-
logically, and this, in turn, has led to a great deal of research effort being
devoted to transport problems. I have therefore included, as one of the main
series in the course, a set of lectures by Dr. A. F. GIBSON on transport pro-
perties of semiconductors. The approach in this case will be mainly from an
experimental point of view. The first few lectures will be introductory, leading
to more advanced coﬁcepts ;. the series will end with a discussion of some of
the outstanding problems in this field and will deal, in particular, with some
interesting new phenomena associated with nonequilibrium electron distri-
bution in high electric fields, popularly known as «hot electrons ». These
aspects will be illustrated by a number of seminars dealing with recent work
in this area including that of Dr. ,GiBsoN himself and his research staff.

Another field of research which has contributed greatly to our understand-
ing of semiconductors has been a study of their optical properties, first through
investigations of photoconductivity and more recently through observation of
optical absorption spectra. The use of strong magnetic fields in conjunction
with the latter has added greatly to the power of the technique. After a brief
introduction by myself, the subject will be treated in a series of lectures by
Dr. B. Lax who will deal in particular with optical properties of semiconductors
in a magnetic field, including some of the more recent work by himself and
his research staff. (Another series will include lectures dealing with optical
absorption due to lattice vibrations, see below.)

These two subjects, transport and optical properties of semiconductors,
are, in my opinion, perhaps the most important and so T have chosen to devote
these two main series of lectures to them. Other properties, such as magnetic
and thermo-magnetic behaviour, have added a great deal of supplementary
information and discussions of these have been added as shorter supplementary
series of lectures by Prof. C. ENz and Prof. L. SOSNOWSKI.
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The marked success of semiconductor research in the past decade has largely
been due to the availibility in pure form and as single crystals of the materials
for investigation. Much of the early work in semiconductors was bedevilled by
unreproducibility and uncertainty owing to the presence of uncontrolled impu-
rities and to the effects of boundaries between micro-crystals in the polycrys-
talline samples which were generally used. The remarkable purity and control
which can now be achieved has resulted only from a great deal of hard work
and from an understanding of the physical chemistry and metallurgy of the
processes involved. It therefore seemes to me to be quite appropriate, and
indeed very desirable, to devote quite a substantial portion of this course to
the physical chemistry and metallurgy of semiconductors and to the problems
of specimen preparation. A series of lectures lasting right through the course
will be devoted to this subject being given first of all by Dr. H. J. VINK and
later by Dr. N. B. Hax~NAY. Dr. VINK’s lectures will deal with the thermo-
dynamics of imperfections in erystals and with other basic phenomena associa-
ted with erystal growth and Dr. Hannay will discuss the theory and practice
of obtaining crystals with desired impurity concentrations.

The above lectures constitute what I might call the main structure of the
course. In addition T have decided to include a series of lectures on one aspect of
semiconductor physices in which, in my opinion, outstanding progress has recently
been made. This will give those attending the course an opportunity to hear
at first hand a detailed account of work on one of the vigorous growing points
of the subject by those responsible for its growth. For this subject I have chosen
lattice vibrations. A series of lectures will be given on the theory of lattice
vibrations by Dr. W. CocHrAN, who has made outstanding contributions to
this subject, and was to be followed by some lectures by Dr. F. A. JOHNSON
whose measurements of the lattice vibration bands of a number of semicon-
ductors has been one of the outstanding recent advances in the experimental
investigation of the properties of erystalline solids. Unfortunately Dr. Johnson
is unable to come and I shall do my best to describe some of his work.

These lectures will be suplemented by a number of lectures and seminars
on special topics given by some of the lecturers and by distinguished visitors
to the school. For example, Dr. HANNAY will give two lectures on recent work
on oxide and organic semiconductors, Professor H. WELKER will give two
seminars on the magneto-resistance of InSb in high magnetic fields and Dr.
S. H. KoeNta will give two seminars on the effect of stresses on the band struc-
ture of Ge. In addition, a number of short papers will be given by students
of the course in the seminars, describing some of their own research work.
The opportunity which this will afford for them to discuss their work with
more experienced research workers is one of the more important features of
the school.
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Band Structure of Semiconductors.

L. PINCHERLE
Bedford College, University of London - London

1. — The foundations of band theory.

It is assumed that students are already familiar with the fundamental
notions about semiconductors, and the present lectures are meant to provide
a wider picture of the theoretical framework. ,

The band theory of solids is a model for the study of the electronic pro-
perties of crystals; it is based on that point of view which considers a crystal
as a single very large molecule in which it has no meaning to associate an
electron to a given atom. Rather all the electrons are assumed to move through
the whole crystal, and an electron has the same probability of being at equi-
valent points in the crystal.

The alternative point of view, which starts by considering each electron
as bound to a given nucleus is also useful, for instance for the discussion of
types of bonding, and in those substances in which conduction occurs through
a « hopping » motion. It corresponds to the Heitler-London approach for mo-
lecules. In general, however, the first picture, analogous to the method of
molecular orbitals in molecules, has proved more fruitful, though, of cohrse,
electrons of deep shells and sometimes d-electrons in transition metals are better
treated as localized, and the Heitler-London approach must, of course, be the
correct one when the interatomic separation becomes very large.

From the start one makes in band theory the very important approximation
of assigning an individual wave function to each electron. The problem heing
a many-body one, one ought to consider a single wavefunction ¥ being a
function of 3V (4N if spin is included) co-ordinates, N being the total number
of electrons. But to deal with such 3N-dimensional ¥ is far too difficult and
one must tlen resort to approximations of the type ‘

(@, Yy 2 eee By ¥ 2x) = PalB012) von @ (X, 0,07)

in which one considers individual wave functions depending on the co-ordinates

1 — Rendiconti S.I.F'. - XXII.
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of a single electron. Correspondingly, the total energy is the sum of the ener-
gies of the individual electrons. More complicated combinations of the wp,
may be taken, to make ¥ a completely antisymmetrical. function, and in this
vay interaction effects may be taken into consideration. One should note
that the classification of these interactions into exchange, correlation, etc.,
arises because of the use of the approximation of individual wave functions.
The name «band theory » arises because of the striking fact that in the
model the energy levels allowed for the electrons group themselves into bands,
often separated by intervals of.enerp;y in which normal levels are forbidden.
That every atomic level must, on the assumption that the motion of each
electron extends to the whole solid, broaden very considerably, can be under-
stood by a simple ap-

v A plication of the uncer-
tainty principle, since

I the electron spends on-
ly a short time orbit-

ing around each atom.
But the existence of

bands is better under-
/\J : stood adopting the

R4
k wave picture of the

Tig. 1. - a) Second band of allowed frequencies; b) Forbid- electron, since bands

den gap; ¢) Piss band of allowed frequencies. of allowed and forbid-

den frequencies exist

in the case of any wave propagation in a periodic structure (for electrons the

frequency » of the De Broglie waves is not an observable quantity and

one considers instead the energy K = lw). In all such cases it is found that

the dispersion relation, that is the relation between frequency » and wave

number k is, taking for simplicity a one-dimensional problem, of the type
indicated schematically in Fig. 1. Its main features ave:

1) » is a periodic function of k;
2) for any given k there are generally a number of possible frequencies;

3) values of » within certain frequency intervals are not found for any
value of k.

Yet another useful way of visualizing how the energy bands arise is to
start with a « crystal » with two atoms and add successively more atoms. As
is well known from the example of the H, molecule, when two like atoms come
together, each atomic level splits into two molecular levels. Adding a third
atom gives three molecular orbitals with energies grouped about the original
atomie level. Each addition of a new atom adds one more energy level and
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in the limit for N very large one gets bands, each containing N levels, cach
band deriving in a sense from an atomic level, though this statement requires
qualification. The N levels are so close together, that in practice one may
consider them as a continuum and introduce a density of states dn. /dE, being
the number of levels per unit volume of the crystal per unit energy interval.

In what follows, complete validity of the band model will be assumed.
Yet one may wonder how a one-particle approximation can be valid when the
electrons interact with strong long-range forces. However it has been shown
in the last few years, chiefly from the work of GeELL-MAaNN, Konx and others,
that a many-body system such as the electrons in a crystal, is capable of
single particle excitations, as well as of other excitations such as collective
oscillations which are not easily described by a single-particle model and for
which the interaction between the excited particles is important.  Now the
single-particle excitations in which one is interested in solids have energies
much lower than that of the lowest collective motion.  In such cases, and as
long as one ix not interested in interactions between excited particles and
between excited particles and holes, the single-particle excitations are described
by energy bands specified by functions E(k). Under the usual experimental
conditions, all complicated many-electron effects are completely contained in
E(k) and in the dielectrie constant and magnetic susceptibility of the material.
It has been proved that the energy bands defined in this way are the same
as those obtained from the Hartree-Fock self-consistent equations in the one-
particle model. 1t may be remarked in this context that there are many
experimental indications that the basic ideas of the one-particle approximation
are applicable to metals. A well defined Fermi surface, enclosing the occupied
region of k-space for the one-particle functions, exists in metals and its de-
tailed charvacteristies can be determined. It is clear that the approximation
is even more legitimate in the case of semiconductors wheve the number of
carriers involved in transport processes is usually small. In conclusion, the
three major approximations of the band model are:

1) the action of other electrons on the electron under study can be
replaced by a periodie potential:

2) anything in the nature of multiplet structure can be neglected, treat-
ing the problem like, in the case of atoms, that of one electron outside closed
shells: there are phenomena where this does not hold, for instance in the case
of the exciton resulting from the interaction between an electron and a hole;

3) one can caleulate the energy bands assuming fixed nuelei. The inter-
action with the lattice vibrations is introduceéd later as a perturbation and
in many cases, particularly at low temperatures, it simply increases the eflective
mass of the carriers. When the interaction ix very strong, as in ionic erystals,
it is not yet certain whether the perturbation approach is justified.
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2. — Form of the individual wave funetions.

The crystal is' a periodic structure, thus the potential U(r) to be inserted
into Schrodinger’s equation for the determination .of the one-electron energies
and wave functions is also periodie: from this simple fact follow many far-
reaching properties. U includes the field of the nuclei and of all the electrons
except the one under investigation. Now the solution of the equation

2.1) Vey(r) + 2m/E (B — U(r)]p(r) = 0

can be proved (Floquet’s theorem) to have the form -
(2.2) w = exp[ik-rlu(r),

where w«(r) is periodic with the periodicity of the lattice. Functions of the
type (2.2) are sometimes called Bloch functions. The vector k plays the role
of a set of three quantum numbers and can take any real value. (2.2) can
be justified from a physical point of view by observing that, according to our
hypotheses, |y |* must be periodic with the periodicity of the lattice and thus,
if R, is any fundamental translation of the lattice,|y(r+R;|*=|y(r)|?, from
which p(r+R,)=exp[if]y(r). To determine the form of the phase shift 0,
observe that R, (Section 3) is la+mb+nc, where a, b, ¢ are the primitive
vectors of the lattice. One can then introduce an arbitiary real vector k
such that the constant by which y is multiplied under the translotion a is
exp[ik-a], under b it is exp[ik-b], under citis expi[k-c]. If now we make
the translation R;, where the index ¢ indicates the set of integers I, m, n, p
becomes multiplied by exp[ik-R;]. The relation y(r-+R,)=exp[ik-R]y(r)
is the fundamental periodicity relation for the wave functions. Indicating by
T, the operation of translating by R, (2.3) becomes Ty, = exp[ik-R,]y, and
may be interpreted as showing that y, is an eigenfunction of the operator T';
belouging to the eigenvalue exp[ik-R,], which is a constant of the motion.
The Hamiltonian commutes with all translations 7';, which also all coinmute
with each other. Writing now u(r)=exp[—ik-r]y(r), we have

u(r + R,) = exp[—ik-(r + R)]y(r + R,) = exp[—ik-r]y(r) = u(r),

that is, » has the periodicity of the lattice and (2.2) is justified. The rigorous
proof can only be indicated in an incomplete form. It is necessary to assume
periodic boundary conditions, that is that the wave function repeates itself
after a very large number of lattice points along any chosen direction along
which the lattice spacing is a. As before y(r+a)= Cy(x), where C is a com-
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plex constant. Then yp(z+Na)= CYy(x)=y(x), that is C" =1, or
C = exp[27ami|N] m=0,1,.. N—1.

This is satisfied if y has the form y(x)= exp[2nmiz/Na]u(x) with u(x) pe-
riodic; writing now k=2am/Na, the theorem is proved (since the direction
considered is arbitrary). As N — co, k becomes a continuous variable.

If the potential is constant, it may be taken as zero and the solution of
(2.1) is p =exp[ik-r] with E=4#%%?/2m. #k is in this case just the momen-
tum of the electron. It will be proved in Section 4 that also in the general
case Ak has many. of the properties of momentum and can thus be called

~«crystal momentum ». It is not equal, though, to the average value of mo-
mentum. The energy of a state y, is to all intents and purposes a continuous
function of k and a particular dispersion relation E(k) characterizes each band.
Such relation is one of the most important properties of a material. It enters
in.a fundamental way in any calculation of the electrical, optical, thermal, etc.,
properties of the substance.

It should be remarked that, although energy bands are characteristic of
periodic structures, they are not confined to these structures. It is still useful
to talk about bands in a disordered material (as broadened atomic levels),
provided there is enough overlapping between atomic orbitals centred on neigh-
bouring atoms. It is still possible to consider an E —k relation, but the
wave functions have not in general the form 2.2. These considerations are in
line with the experimental fact that often no great discontinuities of the
electrical and other properties of metals and semiconductors occur at the
melting point. )

More precisely it is found that in general the loss of long-range order has
not a great effect on the electrical properties, and thus presumably on the band
structure, provided the short-range order is preserved, that is, provided the
co-ordination corresponding to the solid phase is preserved in the liquid one.
Thus, when a metal with a close-packed structure melts, hardly any discon-
tinuity occurs. On the other hand, fusion must have a marked effect in sub-
stances with directed bonds which must necessarily be broken at the melting
point. This occurs, for instance, in Ge and InSb, their density increasing con-
siderably at the melting point, the structure of the liquid approaching -that
of a close-packed metal. Correspondingly, the conductivity increases by a
factor of the order of 10, due to a marked reduction of the energy gap.

The system of electronic bands in a liquid depends on the average distance
between atoms and on the fluctuations from this average. The problem of
evaluating the band structure is a complicated one, and is probably best tuckled
by the approach which considers the electrons as bound to individual atoms,
rather than by an extension of the band model. The possibility of conduction
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by positive holes remains, though the bases of the concept of positive hole
are then somewhat different from those holding in the case of a crystal.

3. — Representation in reciprocal space. Brillouin zone.

A cerystal lattice has several periods. One chooses periods a, b, ¢ such that

'a’ is the shortest period in the lattice (or one of several equal shortest
ones):

b is the shortest not parallel to a:
¢ is the shortest not coplanar to a and b;
then any period R of the lattice is given by

R —=la‘ mb -+ ne [, m, n integers.

The lattice so defined is called the Bravais lattice of the crystal to which it
belongs., The erystal is entirely desceribed if the content of one parallelepiped
of sides a, b, ¢ is known. This unit is

= called a primitive cell of the erystal

|| -r/’/ / (Fig. 2 shows the primitive cell for the

| 7y / face-centred enbice lattice: the volume of

/ly // / this cell is one quarter that of the funda-

// Ly / mental cube) and it may contain any

» I( _ ,} nuwmber of atoms. It is proved in crys-

// .{L/”/ L tallography that there arve just 14 difle-
/ // : g rent Bravais lattices, e.g. the hexagonal,
[ a2 T the simple cubie, the face-centred and the
z////:,, - body-centred cubie lattices.  In each case
— the primitive cell may be filled in a num-
Pz, 2. ber of different ways having different

svinmetry and in this way the 14 Bravais
lattices become diversified into 230 complete space groups.  Each of these
groups can be the symmetry type of several dilicrent erystal structures.  Fi-
aure '3 gives three structures having the face-centred cubic Bravais lattice,
that is the monatomic face-centred structure (Al), the NaCl structure, the
diamond structure (Si, Ge) and the zineblende structure (most T1I-V inter-
metallic semiconductors). In the last three structures, there are two atoms
per fundamental cell: they ave made up of two interpenetrating face-centred
lattices.
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‘.(, '\\ .
(/ 2N [N
<7 \\ | /‘ Pig. 3. — (a) Monatomic face-centred
{ / cubic structure; (b) sodium chloride
J - N strueture; (¢) zincblende structure
- ~ T A showing the tetrahedral bond confi-
g \\\4 guration. The two kinds of atoms
are identical in the diamond strue-
c) ture.

Some of the rotational symmetries of the Bravais lattice are not present in
the crystal, or retained in a modified' form, e.g. a rotation about a certain
axis which is a symmetry element of the Bravais lattice must be combined

Fig. 4. — Projection of
Fig. 3¢ on the front face
of the cube: o o top la-
yver; @ @ second layer;
x x third layer; + +
fourth layer.

with a translation along the axis of rotation by a
fraction of a lattice displacement. Thus in the dia-
mond structure the normal cubic fourfold symmetry
becomes a screw symmetry (Fig. 4: the screw axis
lies in the centre of the squares one of which is out-
lined). The presence of screw axes, or glide planes,
has a more important effect on the band structure
than the number of atoms per primitive cell. Again,
the centre of inversion present in the Bravais face-
centred lattice is missing in the zincblende structure.

Now, given a lattice with basis vectors a, b, c,
one defines as its reciprocal space that generated by

three basic vectors e, B, 7y, satisfying

a-a
(3.1) a-b

a-c

= 2n ; Ba=0; ya=0,
=03 B-b=2n; yb=0,
=03 Be=0; Y'c=2xm,
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so that the co-ordinate axes in reciprocal space are perpendicular to the co-
ordinate planes of the direct lattice. Solving the eqs. (3.1)

__2nbXxc,

2ne.xX a 2na X b
P : o ARG _
abxce

“abxe YT abxe’

B

The relation between any reciprocal vector K, = pa-+¢qf +ry (p, g, 7 integers)
and any direct lattice vector R;=la+mb-+nc is

(3.2) L .-R; = 2n(pl + gm + rn) = 279 (¢ an integer).

The vectors K, are introduced in perhaps the most natural way by expand-
ing the potential V(r), which is periodic with the periodicity of the lattice
in a Fourier series V(r)= > V(K,) exp[¢K,-r]. The K, as defined are the

K

only «frequencies » which lead to the correct periodicity.

The volume of the primitive cell of the reciprocal lattice is 8z® divided by
the volume of the primitive cell of the direct lattice. By its definition each
vector K, is perpendicular to a set of planes of atoms in the crystal and the
spacing of these planes is 2x/K,. This is made use of in the theory of the
diffraction of X-rays by crystals.

It is easily seen that the reciprocal lattice of a simple cubic lattice is also
simple cubic, and 'that the reciproeal lattice of a face-centred cubic lattice is
body-centred and viceversa.

Consider now two waves that differ from each other by a fundamental vector
of the reciprocal lattice, K,. Take two corresponding points r and r+R; in
the direct lattice. Let the phase difference between the two waves at r be ¢.
Then the phase difference at r+R, is ¢+ (k+K,)-R,—k-R,= ¢-+2zng (be-
cause of (3.2)). The phase difference is thus the same at equivalent points.
From the point of view of the Bravais lattice the two waves may be said to
be equivalent, since, although they differ from each other within a primitive
cell, they behave equivalently from cell to cell. It is unnecessary to consider
more than one of all the equivalent waves of wave vector k+ K, and thus
wave vectors are reduced to their smallest possible value which can be obtained
by subtracting vectors of the reciprocal lattice. The end points of all reduced
wave vectors fill a region around the origin of reciprocal space which is called
the first Brillouin zone: it contains all nonequivalent k-vectors. Since for
our purpose we shall not require the other zones that may be constructed
outside the first, we shall call it simply and somewhat improperly just the
Brillouin zone (BZ). Having chosen one reciprocal lattice site as origin of
k-space, the BZ is by its definition the polyhedron whose faces bisect perpen-
dicularly the lines joining the chosen lattice point to its near neighbours. The
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BZ for the direct face-centred cubic lattice, whose reciprocal lattice is body-
centred, is the truncated octahedron of Fig. 5. The hexagonal faces are the
planes bisecting perpendicularly the lines joining the central lattice point to
its eight nearest neighbours along the (1, 1,1) and equivalent di)rections; the

Fig. 5. Fig. 6.

square faces bisect the lines joining it to its six second nearest neighbours
along the (1,0, 0) and equivalent directions. The BZ of the body-centred
cubic lattice, whose reciprocal lattice is face-centred, is the rhombododeca-
hedron of Fig. 6. For the simple cubic lattice the BZ is a cube; for the
hexagonal lattice it is a hexagonal prism.

-The shape of the BZ is determined only by the type of the Bravais lattice,
not by the particular crystal structure. There are thus just 14 BZ and, for
instalice, the BZ of Al, Na(Cl, Si, InSb are all the truncated octahedron of
Fig. 5. However, the classification of the various energy bands and, of course,
the ordering. of the bands, depend on the particular structure.

When the wave is modulated by the periodic function w as in (2.2), it is
still true that the « wave vector» k can always be reduced (by subtracting
a suitable reciprocal lattice fundamental vector K,) to give a k' lying in the
first Brillouin zone, while still preserving the form (2.2) of the wave function;
in fact

yu(r) = exp[ik-rlu,(r) = exp[i(k — K,)) -r]u,(r)exp[i K, -r] =
— exp[ikrlu, (),

since exp[iK,-r] has, like u, the periodicity of the lattice.

Thus the one-electron wave functions of a solid are periodic in reciprocal,
or k-space, and then also the eigenvalues F(k) must be periodic functions of k,
with the periodicity of the reciprocal lattice. Fundamentally this is still a
consequence of the fact that the Hamiltonian commutes with all the trans-
lations 7'; of the lattice. Therefore it is necessary to study the dispersion
relation only within the BZ. This scheme in which all vectors are considered



