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Preface

Catalysis research continues to address both the traditional areas of chemical
synthesis and fuel production, but with increased emphasis on environmentally
benign processes and products. This volume reflects the interest in both. The
reviews provided here include hydrogen production, upgrading of fuels to
minimize emissions, as well as new catalysts and processes for chemical
synthesis — each with attention to the environmental impact of catalyst activity
and selectivity.

Mehri Sanati and Mostafa Faghihi (Vdxjo University, Sweden), Bjorn
Harrysson (Nynds Naphthenics AB, Stockholm, Sweden), Bjorje Gevert
(Chalmers Gothenburg, Sweden), and Sven Jiaras (KTH, Stockholm, Sweden)
provide a review of hydrodearomatization, which is important in fuel proces-
sing. This reaction is typically carried out with other hydrotreating reactions
(e.g., hydrodesulfurization). Hydrodearomatization is essential in order to
improve the fuel quality and minimize undesirable emissions. One key area for
research is sulfur tolerance, particularly for the noble metal-based catalysts.
The authors explore the reactivity of a wide range of catalysts, and address the
hydrodearomatization of mono- and multi-ring aromatic compounds.

Wolfgang Hoelderich and Felix Kollmer (University of Technology,
RWTH, Germany) examine catalytic oxidations for fine chemical synthesis,
which typically use oxidizing agents other than dioxygen, such as N,O and
H,0,. The authors point out the important differences between oxidation
reactions (and catalysts) needed to produce bulk chemicals, compared to those
needed to produce fine chemicals: operating temperature, reactor design.

In another review from KTH, Johan Agrell, Bard Lindstrém, Lars Pet-
tersson, and Sven Jdras review the catalytic generation of hydrogen from
methanol. This is one of the options for generation of hydrogen from liquid
fuels for stationary and mobile applications, fuel processing, and fuel cells.
Methanol can be used to generate hydrogen by several reactions: decomposi-
tion to CO and hydrogen, steam reforming, and partial oxidation (as well as
combinations of these reactions). The authors explore the different catalysts
needed for each of these reactions, as well as recent industrial research activity.

Tomoyuki Inui (Air Water Inc., Osaka, Japan) also addresses reforming of
hydrocarbons for syngas and hydrogen production. His review focuses on the
reaction of methane with CO,, oxygen and/or steam. There are significant
research needs in this well-studied area, including coke formation and reactor
design/kinetics. Both noble metal and conventional Ni-based catalysts are
reviewed, as well as new synthesis techniques.

Olga Buyevskaya and Manfred Baerns (Institute for Applied Chemistry

v



vi Preface

Berlin-Adlershof, Germany) provide a thorough review of the oxidative
functionalization of ethane and propane. This review concentrates on the
oxidative dehydrogenation of these two compounds to produce the corre-
sponding olefins. In addition, the selective oxidation of ethane and propane to
produce directly higher value oxygenates such as acetic acid, acrolein and
acrylic acid is addressed.

Wataru Ueda (formerly at Science University of Tokyo in Yamaguchi; now
at Hokkaido University, Sapporo, Japan) and Sui Wen Lin (Tokyo Institute of
Technology, Japan) also address selective oxidation of lower alkanes —
epoxidation, coupling and dehydrogenation reactions, for example. Their
review focuses on the use of metal halide catalysts for these reactions. These
catalysts can increase the activity and selectivity of selective oxidation reac-
tions. Particular emphasis is given to the layered metal chloride catalysts for
selective oxidations.

Sung-Won Ham (Kyungil University, Korea) and In-Sik Nam (Pohang
University of Science and Technology, Korea) discuss the selective catalytic
reduction of NO, using ammonia over conventional vanadium-based catalysts,
zeolite catalysts, and exploratory catalysts based on novel titania formulations
and pillared clays. A comprehensive review of poisoning and deactivation is
also provided, along with a study of the mechanism/kinetics and reactor
modeling.

Finally, Chunshan Song (Penn State University, USA) reviews the conver-
sion of polycyclic hydrocarbons into specialty chemicals over zeolites. Until
recently, the conversion of these compounds into useful products was not
widely studied. These compounds are used in advanced polymers, but the
large-scale production of the corresponding monomers requires selective
catalysts for the conversion of polycyclic aromatic hydrocarbons. This review
focuses on the various zeolites that can be modified to produce these
compounds.

I am working with the authors of Volume 17 to prepare reviews of topics
that are at the leading edge of catalysis research. I look forward to bringing
this next volume to you. As always, comments are welcome.

James J. Spivey

Department of Chemical Engineering
NC State University

Raleigh, NC 27695

USA

jispivey@ncsu.edu
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Catalytic Hydrodearomatization

BY MEHRI SANATI, BJORN HARRYSSON, MOSTAFA FAGHIHI,
BORJE GEVERT, AND SVEN JARAS

1 Introduction

Hydroprocessing of various feeds for the production of fuels is extensively
practised in the petroleum industry, and to some extent in coal liquefaction
and in the upgrading of synthetic fuels and lubricant oils. Another promising
area where hydroprocessing can be applied is the development of renewable
non-fossil fuels (pyrolitic bio-oil) for the elimination of the oxygen-containing
molecules and the improvement of the H/C ratio.

Hydroprocessing reactions occur on the active sites of the catalysts. Also, a
suitable pore size distribution of the catalysts is required to ensure the access of
reactant molecules to the active sites. The catalysts used in hydroprocessing
consist of a molybdenum catalyst that is supported on a high surface area
carrier in the 100-300 m?/g range, most commonly alumina, and is promoted by
either cobalt or nickel. The concentration by weight of the metal is usually 1-4%
for Co and Ni, and 8-16% for Mo.! The catalysts are active in the sulfided
state, being either presulfided or sulfided on stream with a sulfur containing
feed. Monometallic (Pt or Pd) and bimetallic (Pt-Pd) catalysts of noble metal
supported on y-Al,O; are known to be highly active in the hydrogenation of
aromatics under mild conditions. However, noble metal catalysts are easily
poisoned by a small amount of sulfur; severe pre-treatment of the feedstock is
needed to reduce sulfur to a few ppm. Recent studies have dealt with how to
improve the activity of these catalysts and their sulfur tolerance, e.g. by adding
a second transition metal or using different support material.>~!!

The typical feedstock for laboratory tests is usually either a mixture of
model mono-compounds and/or a mixture of different aromatic hydro-
carbons.!?~13 In industrial feeds, however, several types of aromatics are
present, whose hydrogenation activities differ considerably. The composition
and concentration of various nitrogen and sulfur compounds also significantly
influence the activity.

The process is normally carried out in a trickle-bed reactor at an elevated
temperature and hydrogen pressure. In the case of severe deactivation, an
ebullating bed reactor might be used but this type of reactor is not suitable due
to back-mixing when a high conversion is needed. The specific characteristic of
a trickle bed reactor is that a part of the catalytic surface is covered by a liquid

Catalysis, Volume 16
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2 Catalysis

and the other part by a gas. In the common set up, the liquid phase flows
downwards through the reactor concurrently with a gas phase that partly
consists of vaporized compounds. The temperature and pressure ranges for the
hydrogenation of aromatic hydrocarbons in a liquid phase batch reactor were
reported to be 450700 K and 3.5-17 MPa, respectively.!4-2512-13

Hydroprocessing catalysts are quite versatile, exhibiting activity for a
number of important reactions. Those of major interest in hydroprocessing
that might be referred to as hydrorefining correspond to removal of heteroa-
toms; hydrodesulfurization (HDS), hydrometallization (HDM), hydrodenitro-
genation (HDN) and hydrodeoxygenation (HDO). These reactions involve
hydrogenolysis of C-heteroatom bonds. The removal of sulfur and nitrogen is
necessary to meet environmental limits. Sulfur may also cause problems with
catalyst poisoning and corrosion. HDN is needed to avoid catalyst poisoning
of acid sites and improving stability in lube oils.

An important reaction in petrochemical industry and refineries is hydro-
conversion, which enables a change in the molecular weight and structure of
organic molecules. Examples are hydrogenation (HYD) and hydrodearo-
matization (HDA). When oil is hydrotreated, the reduction of aromatic
compounds competes with the removal of sulfur and nitrogen. The purpose of
hydrotreating (in the latter sense) is to improve the stability and quality of the
product. The reduction of aromatic compounds, especially polyaromatics,
gives a higher stability to the product, as well as affecting the solubility and
colour of the product. Aromatics in fuels not only lower the quality and
produce undesired exhaust emissions, they also have potential hazardous
and carcinogenic effects.?® Thus polyaromatic compounds are removed to
meet health and environmental regulations. The growing understanding of
health hazard associated with these emissions is leading to limitation in the use
of aromatics in both Europe and the United States.?’

The process to make cleaner fuels that are more environmentally friendly is
often accompanied by desulfurization and hydrodearomatization. Decreasing
the aromatic content increases the cetane number in diesel fuel.

Two approaches, a single-stage process and a two-stage process, have been
proposed for distillate fuels (particularly diesel fuels) to meet these strict
standards for diesel fuels. The single-stage process combines severe hydrode-
sulfurization and hydrogenation using a single conventional sulfided CoMo,
NiMo or NiW catalyst. In order to reach the necessary aromatic saturation the
H; pressure needs to be substantially higher than the H, pressure at which
current hydrodesulfurization units operate.?®

The two-stage system uses a conventional hydrotreating catalyst in the first
reactor and a noble metal catalyst in the second; this yields a low aromatic
diesel stream at moderate hydrogen pressure.?%-30

This latter system is highly active for the reduction of aromatics but is very
susceptible to sulfur poisoning; the sulfur concentration at the inlet of the
second reactor must be reduced to a few parts per million.?!

Thus, the use of these catalysts depends strongly on severe pre-treatment
conditions, unless the sulfur tolerance can be greatly improved for the noble
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metal catalyst. A number of recent studies have attempted to address this
problem by developing catalysts with a high resistance to the sulfur poisoning
and at the same time retaining a high hydrogenation activity.

In spite of the large number of articles published in recent years, the subject
has been widely reviewed. The catalytic aspects of the hydrogenation were
discussed by Krylov and Navalikhina.?? Special attention to the preparation
methods was discussed in more detail by P. Grange and X. Vanhaeren.?” A
comprehensive review of the hydrodeoxygenation, with particular focus on
upgrading of bio-oils, was published by Furimsky.?? Catalyst deactivation
during hydroprocessing, including the adverse effects of the O-compounds,
was reviewed by Furimsky and Massoth.3*

In this review, the primary focus is on the most recently reported work in the
literature for both basic and industrial aspects of hydrodearomatization
reactions. It is an extension and update of recent studies dealing with the
aromatic reduction in different petrochemical feedstocks. These reviews, which
have recently appeared in literature, provide comprehensive information
regarding hydrodearomatization.3!> 33-37

A comprehensive review of the reactions during hydroprocessing has been
published by Topsee et al.!

2 Hydrogenation of Mono-, Di-, Tri-, Multiring and Mixtures of Aromatic
Compounds

In recent years an increasing awareness of the use of aromatics contained in
different feedstocks, especially distillate fuel (in particular diesel and gas oils),
with respect to the adverse effects of undesired emissions and potential health
risks, has received considerable attention. In addition, a high aromatic content
is associated with poor fuel quality, giving low cetane number in diesel fuel and
a high smoke point in jet fuel.

To date, a number of the model compounds that are representative of
components in industrial feeds, have been extensively studied on several
catalysts. These include both unsupported and y-Al,O; supported hydro-
genation catalysts, using the conventional CoMo, NiMo, NiW, and platinium
group metals (including ruthenium, rhodium, palladium and platinum). On all
catalysts, the rate of hydrogenation generally increases with the number of
aromatic rings present, i.e. a low rate of hydrogenation is observed for mono-
aromatic rings such as benzene.! The greater reactivity for hydrogenation with
higher fused ring systems, such as naphthalene and anthracene, is due to the
fact that the resonance energy of the second ring of these multiple compounds
is less than for benzene.?’

Table 1 of this review shows the recent related publications on hydrodear-
omatization and the catalytic systems, reaction conditions and product selec-
tivities for these studies. The choice of model compounds were often the
mono-aromatics compounds or a mixture of the aromatics in order to simulate
a composition similar to the industrial feedstock in refinery.



