Dental Biomechanics Edited by Arturo N Natali # **Dental Biomechanics** Edited by ## Arturo N Natali Centre of Mechanics of Biological Materials, University of Padova, Italy First published 2003 by Taylor & Francis 11 New Fetter Lane, London EC4P 4EE Simultaneously published in the USA and Canada by Taylor & Francis Inc, 29 West 35th Street, New York, NY 10001 Taylor & Francis is an imprint of the Taylor & Francis Group © 2003 Taylor & Francis Typeset in Times by Integra Software Services Pvt. Ltd, Pondicherry, India Printed and bound in Great Britain by TJ International Ltd, Padstow, Cornwall All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying are recording, or in any information storage or retrieval system, without permission in writing from the publishers. Every effort has been made of ensure that the advice and information in this book is true and accurate at the time of going to press. However, neither the publisher nor the authors can accept any legal responsibility or liability for any errors or omissions that may be made. In the case of drug administration, any medical procedure or the use of technical equipment mentioned within this book, you are strongly advised to consult the manufacturer's guidelines. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging in Publication Data Dental biomechanics / edited by Arturo Natali. p. cm. Includes bibliographical references and index. ISBN 0-415-30666-3 (hardback: alk. paper) - 1. Dentistry, Operative. 2. Dental materials. 3. Biomechanics. - 4. Human mechanics. [DNLM: 1. Biomechanics. 2. Dental Implants. 3. Materials Testing. 4. Osseointegration. 5. Periodontal Ligament. 6. Tomography, X-Ray. WU 640 D4132 2003] I. Natali, Arturo. W U 040 D4132 2003] 1. Nata RK501.5 .D466 2003 617. 6'05—dc21 2002151289 ## **Dental Biomechanics** ## **Preface** . . . Thus my plan here is not to teach the method that everyone must follow in order to guide his reason, but merely to explain how I have tried to guide my own. Those who set themselves up to instruct others must think they are better than those whom they instruct, and if they misguide them in the slightest they can be held responsible. But, since I am proposing this work merely as a history or, if you prefer, a fable – in which, among a number of examples that may be imitated, there may also be many others where it would be reasonable not to follow them – I hope it will be useful for some readers without being harmful to others, and that everyone will be grateful for my frankness. . . . I hope that those who use only their pure natural reason will be better judges of my views than those who trust only ancient books. For those who combine common sense and study – and I hope that they alone will be my judges . . . I would say only that I decided to use the time that remains to me in life for nothing else except trying to acquire a knowledge of nature, from which one could draw some more reliable rules for medicine than those we have had up to now. René Descartes, "Discourse on method" I consider it essential to question my dedication to research and, once I am in the midst of it, to reflect on the outstanding privilege of treating the mechanics of biological tissues. I like to consider the approach to be taken on, aiming at the integration of all of the knowledge and competencies that are a part of the research. The significant complexity of biomechanical processes is the manifestation of a superior formulation. Nevertheless, problems that may at first appear insurmountable, can be successfully interpreted by means of an attentive and humble approach that can lead towards the definition of a realistic final configuration. The functional response of biological tissues is, in and of itself, a fundamental reference, which can then be used to access the mechanics within the biological phenomena being dealt with. The strong desire to reach a solution, or the reduced potentiality of the resources adopted for the investigation, should not lead to inadmissible approximations. On the contrary, regardless of how they have been chosen, they must be evaluated for the implication they have on the reliability of the final result, and should represent a cautious passage towards a more complete interpretation. A comparison of the results deriving from subsequent models, whose accuracy has been improved by taking the characterising aspects into account, will tell us how appropriately the investigation has been carried out. These models will be milestones, which confirm that the right course has been taken. With this in mind, the mechanics written in biological phenomena should be read leaving aside the fear of facing their enormous complexity; however, at the same time the researcher must also be guided by the precaution taught by experience. The researcher should not be tempted by immediate results, even if they are attractive, rather than seeking deeper insight into the subject at hand. To carry out research in this way, an ethical approach must be taken, coupling biology and mechanics by using the most updated methodology. Mechanics, physics and chemistry are strictly related to clinical practice for the evaluation of the operational reliability of the results obtained. I intend to report part of the experience and results deriving from many years of activity, in research and education, regarding dental biomechanics. When presenting this work, I am faced with problems pertaining to form and depth with regards to different aspects of bioengineering, which must be treated while remaining compatible with clinical knowledge. The difference in the methods in these cultural areas makes it difficult to propose a unitary presentation of the problems dealt with. Nevertheless, great effort must be made to overcome this discrepancy, with the aim of arriving at a fruitful confrontation and moving towards a unitary definition. The cooperation efforts between bioengineers and clinicians have proved to be a challenge. It is necessary to be realistic and consider the significant difficulties inherent in this situation. As Renè Descart stated, "If artisans cannot implement immediately the invention I explained, I do no think that, for that reason, it can be said to be defective. Since skill and practice are required to construct and adjust the machines that I described, even though no detail is omitted, I would be just as surprised if they succeeded on their first attempt as if someone were able to learn to play the lute very well in a single day, when they are provided with only a good tablature". I hope that the final results of this challenge, rather than displease both engineers and clinicians, promote the substantial integration of interest and engagement in facing sophisticated biomechanical problems. The structure of this work is based on the intention of describing a sequence of events that, in a general sense, should characterise the biomechanical analysis in the dental area. First of all, the mechanics of hard and soft biological tissues, namely the bone and periodontal ligament, is given. Following this characterisation of materials, the geometric configuration of the anatomical site is defined, using tomographic techniques, along with a description of pre-surgical procedures. A significant portion is devoted to the definition of the materials used in dental practice, with regard to both implantology and orthodontics, considering specific manufacturing techniques as well. In the same way, the clinical aspects are reported because of their relevance to practice in implantology and orthodontics. The numerical approach to the biomechanical analysis of dental problems is presented in order to describe the potentialities offered by numerical simulation. A summary of the mechanics of materials, in terms of basic formulation, is reported, as a fundamental reference for approaching the biomechanical aspects treated. The outstanding complexity of biomechanical phenomena expresses a level of optimisation that seems inaccessible for our knowledge, and is source of wonder and respect. The careful consideration of the magnificence of this reality should move anyone involved in this investigation to humility, and to great dedication. Even if this involvement pertains to the definition a small portion of a problem, it could nonetheless represent a great achievement. To be aware of our own position within the field of knowledge constitutes a preliminary requirement for knowledge itself. xiv Preface A discussion on method and knowledge becomes a unique task, passing through the ethics of the person, with the aim of achieving a common end. If my work could serve the purpose of a better integration of researchers and teachers who differ because of their scientific education, I hope it could also serve the purpose of helping create better understanding among the people themselves. I would like to thank everyone that helped me to give substance to these thoughts. For this, I give my profession of gratitude. Arturo N Natali ## **Contributors** #### S Abati University of Milan, Milan, Italy #### C Aparicio Technical University of Catalonia, Barcelona #### FA Auricchio University of Pavia, Pavia, Italy #### F Bonollo University of Padua, Padua, Italy #### VC Cacciafesta University of Pavia, Pavia, Italy #### J Casals Technical University of Catalonia, Barcelona, Spain #### M Chiapasco University of Milan, Milan, Italy #### J Duyck Catholic University of Leuven, Haverlee, Belgium #### E Fernández Technical University of Catalonia, Barcelona, Spain #### G Garattini University of Milan, Milan, Italy #### FJ Gil Technical University of Catalonia, Barcelona, Spain #### MP Ginebra Technical University of Catalonia, Barcelona, Spain #### **RT Hart** Tulane University, New Orleans, United States of America #### H Ishikawa Fukuoka Dental College, Fukuoka, Japan #### xvi Contributors #### I Knets Riga Technical University, Riga, Latvia #### JM Manero Technical University of Catalonia, Barcelona, Spain #### MC Meazzini University of Milan, Milan, Italy #### EM Meroi IUAV, Venice, Italy #### I Naert Catholic University of Leuven, Haverlee, Belgium #### AN Natali University of Padua, Padua, Italy #### M Navarro Technical University of Catalonia, Barcelona, Spain #### M Nilsson Technical University of Catalonia, Barcelona, Spain #### M Nishihira Akita University, Akita, Japan #### PG Pavan University of Padua, Padua, Italy #### LP Petrini University of Pavia, Pavia, Italy #### RP Pietrabissa Polytechnic of Milan, Milan, Italy #### JA Planell Technical University of Catalonia, Barcelona, Spain #### **B** Puers Catholic University of Leuven, Haverlee, Belgium #### D Rodriguez Technical University of Catalonia, Barcelona, Spain #### E Romeo University of Milan, Milan, Italy #### S Sarda Technical University of Catalonia, Barcelona, Spain #### Y Sato Hokkaido University, Sapporo, Japan #### M Soncini Polytechnic of Milan, Milan, Italy #### J Van Cleynenbreugel Catholic University of Leuven, Haverlee, Belgium #### H Van Oosterwyck Catholic University of Leuven, Haverlee, Belgium #### J Vander Sloten Catholic University of Leuven, Haverlee, Belgium #### MM Viola University of Padua, Padua, Italy #### G Vogel University of Milan, Milan, Italy #### **KR** Williams University of Wales, Cardiff, United Kingdom #### K Yamamoto Hokkaido University, Sapporo, Japan ## **Contents** | Preface | xii | |--|-----| | List of Contributors | XV | | 1. Mechanics of bone tissue | 1 | | AN NATALI, RT HART, PG PAVAN, I KNETS | | | 1.1 Introduction | 1 | | 1.2 Bone | -2 | | 1.3 Experimental testing and results | 3 3 | | 1.3.1 Anisotropic characteristics of bone tissue | 3 | | 1.3.2 Time dependent response | 4 | | 1.3.3 Bone hydration | 5 | | 1.3.4 Influence of specimen location and age | 5 | | 1.3.5 Fatigue strength | 6 | | 1.3.6 Trabecular bone: mechanical properties | 7 | | 1.3.7 Analysis using the ultrasound technique | 8 | | 1.4 Constitutive models for bone | 9 | | 1.4.1 Linear elastic models | 9 | | 1.4.2 Structural properties | 11 | | 1.4.3 Limit state of bone | 12 | | 1.5 Role of mechanics in adaptation | 13 | | 1.5.1 Phenomenological models | 14 | | 1.5.2 Mechanistic models | 16 | | 1.6 Conclusions | 17 | | References | 17 | | 2. Mechanics of periodontal ligament | 20 | | M NISHIHIRA, K YAMAMOTO, Y SATO, H ISHIKAWA, AN NATALI | 20 | | 2.1 Introduction | 20 | | 2.2 Constitutive models for the periodontal ligament | 20 | | 2.2.1 Hyperelastic constitutive models | 21 | | 2.2.2 Visco-elastic constitutive models | 22 | | 2.2.3 Multi-phase constitutive models | 24 | | V1 | Cont | onte | |------|------|-------| | V. L | COIL | CILLO | | 2.3 Review of the mechanical properties of the PDL | 24 | |---|----| | 2.3.1 Experimental studies on the viscoelasticity of the PDL | 24 | | 2.3.2 Experimental studies on the elastic constants of the PDL | 25 | | 2.4 Measurements of the elastic modulus of the PDL | 26 | | 2.4.1 Materials | 27 | | 2.4.2 Mechanical testing machine | 27 | | 2.4.3 Mechanical tests on the PDL | 30 | | 2.4.4 Results | 30 | | 2.4.5 Discussion | 31 | | 2.5 Conclusions | 33 | | References | 33 | | 3. Computer tomography for virtual models in dental imaging | 35 | | AN NATALI, MM VIOLA | | | 3.1 Introduction | 35 | | 3.2 Foundations of X-ray Computed Tomography | 36 | | 3.2.1 Physical principles of x-ray absorption | 36 | | 3.2.2 Data acquisition | 37 | | 3.2.3 Reconstruction algorithms | 38 | | 3.2.3.1 Iterative Method | 38 | | 3.2.3.2 Filtered Back Projection | 39 | | 3.2.4 X-ray production | 40 | | 3.2.5 X-ray detectors | 40 | | 3.2.6 Volume reconstruction in computed tomography | 42 | | 3.2.7 CT-relief accuracy | 42 | | 3.3 CT software for dento-maxillo-facial imaging | 43 | | 3.4 Notes on NMR applications in maxillo-facial area | 44 | | 3.5 Virtual model generation | 44 | | 3.5.1 Geometric model | 45 | | 3.5.1.1 Segmentation techniques | 45 | | 3.5.1.1.1 Thresholding technique | 45 | | 3.5.1.1.2 Edge finding techniques | 46 | | 3.5.1.2 Border definition | 47 | | 3.5.2 Material characteristics estimation | 48 | | 3.5.2.1 Densitometry | 49 | | 3.5.2.2 Mechanical properties | 50 | | 3.6 Conclusions | 50 | | References | 50 | | 4. Computer-aided, pre-surgical analysis for oral rehabilitation | 52 | | H VAN OOSTERWYCK, J VANDER SLOTEN, J DUYCK, J VAN CLEYNENBREUGEL, | | | B PUERS, I NAERT | | | 4.1 Introduction | 52 | | 4.2 Methodology | 53 | | 4.2.1 CT-based anatomical modelling | 54 | | 4.2.2 CT-based bone properties | 56 | | | | | | Contents | vii | |---|----------|-----| | 4.2. Analysis devaloped | | 59 | | 4.3 Analysis developed 4.3.1 Influence of oral restoration parameters on bone loading | | 59 | | 4.3.2 <i>In vivo</i> bone loading patterns | | 62 | | | | 64 | | 4.4 Pre-surgical analysis4.5 From planning to clinical practice: a technological challenge | | 65 | | 4.6 Conclusions | | 66 | | References | | 67 | | References | | 07 | | 5. Materials in dental implantology | | 69 | | E FERNÁNDEZ, FJ GIL, C APARICIO, M NILSSON, S SARDA, D RODRIGUEZ, | | | | MP GINEBRA, JM MANERO, M NAVARRO, J CASALS, JA PLANELL | | | | 5.1 Introduction | | 69 | | 5.2 Metals and alloys for dental implant devices | | 70 | | 5.3 Titanium and its alloys for medical devices | | 71 | | 5.3.1 Grade-1 CP-titanium | | 72 | | 5.3.2 Grade-2 CP-titanium | | 72 | | 5.3.3 Grade-3 CP-titanium | | 74 | | 5.3.4 Grade-4 CP-titanium | | 74 | | 5.4 Manufacturing processes of titanium alloys | | 74 | | 5.4.1 Casting titanium alloys | | 75 | | 5.4.2 Welding titanium alloys | | 75 | | 5.4.3 Forging titanium alloys | | 75 | | 5.4.4 Powder metallurgy and titanium alloys | | 76 | | 5.5 Machining titanium alloys | | 76 | | 5.6 Surface treatments on titanium alloys | | 80 | | 5.6.1 Mechanical treatments | | 80 | | 5.6.2 Diffusion treatments | | 82 | | 5.6.3 Chemical deposition | | 83 | | 5.6.3.1 The Method of Ohtsuki | | 83 | | 5.6.3.2 The Method of Kokubo | | 84 | | 5.6.3.3 The Method of Li | | 84 | | 5.6.3.4 The Method of Campbell | | 84 | | 5.6.3.5 The Method of Klas De Groot | | 85 | | 5.6.3.6 The Method of Ducheyne | | 85 | | 5.7 Improving the reliability of implant osseointegration | | 85 | | 5.8 Conclusions | | 87 | | References | | 87 | | | | | | 6. Dental devices in titanium-based materials via casting route | | 90 | | F BONOLLO, AN NATALI, PG PAVAN | | | | 6.1 Introduction | | 90 | | 6.2 Microstructure and properties of titanium and its alloys | | 90 | | 6.3 Shaping of titanium components by casting processes | | 94 | | 6.3.1 Investment casting | | 95 | | 6.3.2 Pressure-assisted casting of titanium | | 96 | | vii | i Contents | | |-----|--|------------| | | 6.4 Effects of processing on the quality of castings | 98 | | | 6.5 A case history: manufacturing a titanium framework | 99 | | | 6.5.1 The framework and the casting process | 99 | | | 6.5.2 Visualising the process by means of numerical simulation | 101 | |) | 6.6 Mechanical analysis of titanium bars | 107 | | | 6.7 Conclusions | 108 | | | References | 109 | | 7 | Testing the reliability of dental implant devices | 111 | | | M SONCINI, RP PIETRABISSA, AN NATALI, PG PAVAN, KR WILLIAMS | | | | W SONCINI, RE FILETRADISSA, AN INGIALI, FO FAVAN, RE WILLIAMS | | | | 7.1 Introduction | 111 | | | 7.2 Mechanical reliability of dental implants | 112 | | | 7.2.1 Dental implant configuration | 112 | | | 7.2.2 Materials and surface treatments | 114 | | | 7.2.3 Loading conditions | 114 | | | 7.3 Mechanical testing of dental implants | 115 | | | 7.3.1 Experimental tests for evaluating ultimate load | 116 | | | 7.3.1.1 Analysis of the post-elastic behaviour of dental implants | 117
118 | | | 7.3.2 Numerical simulation of experimental tests7.3.3 Fatigue tests for evaluating the long-term reliability of dental implants | 120 | | | 7.4 Experimental tests to evaluate the efficiency of bone-implant interaction | 120 | | | 7.4 Experimental tests to evaluate the efficiency of bone-implant interaction 7.4.1 The experimental procedure | 123 | | | 7.4.2 The mechanical test results | 123 | | | 7.4.3 Morphological aspects of the bone surrounding implants | 126 | | 9 | 7.5 Conclusions | 126 | | | References | 127 | | Q | On the mechanics of superelastic orthodontic appliances | 132 | | | | 132 | | | FA AURICCHIO, VC CACCIAFESTA, LP PETRINI, RP PIETRABISSA | | | 10 | 8.1 Introduction | 132 | | | 8.2 Shape-memory materials | 136 | | 1 | 8.3 SMA in dentistry: state of the art | 138 | | | 8.3.1 Applications | 138 | | | 8.3.2 Experimental investigations | 139 | | | 8.3.3 Constitutive law and numerical modelling | 140 | | | 8.4 A new experimental investigation | 141 | 141 142 142 145 148 151 154 156 156 8.4.1 Materials and methods 8.5 Orthodontic simulation 8.5.2 Retraction T-loop 8.5.3 Retraction V-loop 8.5.1 Archwire 8.6 Conclusions References 8.4.2 Cyclic loading at slow rate 8.4.3 Comments on experimental results | | Contents ix | |--|-------------| | 9. Clinical procedures for dental implants | 159 | | G VOGEL, S ABATI, E ROMEO, M CHIAPASCO | | | 9.1 Introduction | 159 | | 9.2 Diagnostic procedures | 159 | | 9.2.1 Medical history | 159 | | 9.2.2 Extra-oral clinical examination | 161 | | 9.2.3 Intra-oral clinical examination | 161 | | 9.2.4 Study casts and waxing | 162 | | 9.2.5 Evaluation of implant site | 162 | | 9.3 Surgical procedure in oral implantology | 163 | | 9.3.1 Antisepsis and patient preparation | 163 | | 9.3.2 Atraumatic surgery for implant placement | 164 | | 9.3.3 Prevention and treatment of surgical complicat | | | 9.3.3.1 Intraoperative complications | 171 | | 9.3.3.2 Postoperative complications | 173 | | 9.4 Designing the prosthetic rehabilitation in oral implementation of the prosthetic rehabilitation of the prosthetic rehabilitation in oral implementation of the prosthetic rehabilitation of the prosthetic rehabilitation in oral implementation of the prosthetic rehabilitation in oral implementation or o | | | 9.4.1 Load factors on implant supported rehabilitation 9.4.2 Prosthetic framework and prosthetic leverage | | | 9.4.3 Number and position of implants | 176
177 | | 9.4.4 Connection to teeth | 177 | | 9.5 Prognostic evaluation in oral implantology | 178 | | 9.6 Conclusions | 179 | | References | 180 | | 10. Clinical procedures in orthodontics | 183 | | G GARATTINI, MC MEAZZINI | | | 10.1 Introduction | 183 | | 10.1.1 Diagnosis | 183 | | 10.1.2 Orthodontic treatment planning | 185 | | 10.2 Components of orthodontic appliances | | | and their action | 187 | | 10.2.1 Removable appliances | 187 | | 10.2.2 Fixed appliances | 190 | | 10.2.2.1 Brackets | 190 | | 10.2.2.2 Bands | 192 | | 10.2.2.3 Archwires | 192 | | 10.2.2.4 Elastics and springs | 193 | | 10.3 Biomechanics in orthodontic clinical practice10.3.1 Basic mechanical diagnosis | 193 | | 10.3.1 Basic mechanical dragnosis 10.3.2 Mechanical treatment planning | 193 | | 10.3.2.1 Visualized treatment objectives | 194
194 | | 10.3.2.2 Glossary of orthodontic biomechanics | 194 | | 10.3.2.3 Mechanical treatment plan | 196 | | 10.3.3 Appliance configuration | 197 | | 10.3.3.1 Two tooth systems | 198 | | 10.3.3.2 Intrusion mechanics | 201 | | | | | | 1 | and the same of the same | |-----|------|--------------------------| | v | Cont | OVITE | | A ! | -vru | CILLO | | 10.3.3.3 Transpalatal bars and lingual arches | 203 | |--|-----| | 10.3.3.4 Headgear | 204 | | 10.3.3.5 The mechanics of space closure | 206 | | 10.3.3.6 Uprighting mechanics | 208 | | 10.4 Conclusions | 209 | | References | 209 | | 11. Numerical approach to dental biomechanics | 211 | | AN NATALI, PG PAVAN | 211 | | 11.1 Introduction | 211 | | 11.2 Interaction between implant and bone | 212 | | 11.2.1 Mechanical characterisation of bone tissue | 213 | | 11.2.2 Implant loading | 214 | | 11.2.3 Boundary conditions | 214 | | 11.3 Mechanics of single implants | 214 | | 11.4 Mechanics of multiple implant systems | 222 | | 11.4.1 Geometrical configuration | 222 | | 11.4.2 Loading conditions | 223 | | 11.5 The mobility of natural dentition | 227 | | 11.5.1 Geometric configuration of the periodontium | 228 | | 11.5.2 Loading configurations | 228 | | 11.5.3 Constitutive models | 229 | | 11.5.4 Numerical analysis of <i>in vivo</i> response | 230 | | 11.5.4.1 Non-linear elastic response | 231 | | 11.5.4.2 Time-dependent behaviour | 232 | | 11.5.5 Pseudo-elasticity | 235 | | 11.6 Conclusions | 237 | | References | 238 | | 12. Mechanics of materials | 240 | | AN NATALI, PG PAVAN, EM MEROI | 240 | | 12.1 Introduction | 240 | | 12.2 Material models | 240 | | 12.3 Deformation of continuum | 244 | | 12.3.1 Kinematics | 244 | | 12.3.2 Strain and its measures | 245 | | 12.4 The concept of stress and its measures | 249 | | 12.4.1 Stress vector | 249 | | 12.4.2 Cauchy stress tensor | 250 | | 12.4.2.1 The symmetry of the Cauchy stress tensor | 251 | | 12.4.3 Different stress measures | 252 | | 12.5 Balance laws | 252 | | 12.5.1 Conservation of mass | 253 | | 12.5.2 Weak form of momenta balance | 253 | | | | | | Contents xi | |--|-------------| | 12.6 Constitutive models | 254 | | 12.6.1 Linear elasticity | 255 | | 12.6.1.1 Extension of finite displacements | 256 | | 12.6.2 Non-linear elasticity | 257 | | 12.6.2.1 Hyperelasticity | 257 | | 12.6.3 Linear visco-elasticity | 259 | | 12.6.4 Elasto-damage models | 260 | | 12.6.5 Multi-phase media | 261 | | 12.6.5.1 Balance conditions | 262 | | 12.6.5.2 Constitutive laws | 263 | | 12.7 Conclusions | 263 | | References | 264 | | Index | 265 |