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Preface

Algebraic curves are the graphs of polynomial equations in two vari-
ables, such as y® + 5xy? = x® + 2xy. This book introduces the study of al-
gebraic curves by focusing on curves of degree at most 3—lines, conics,
and cubics—over the real numbers. That keeps the results tangible and
the proofs natural. The book is designed for a one-semester class for
undergraduate mathematics majors. The only prerequisite is first-year
calculus.

Algebraic geometry unites algebra, geometry, topology, and analysis,
and it is one of the most exciting areas of modern mathematics. Unfortu-
nately, the subject is not easily accessible, and most introductory courses
require a prohibitive amount of mathematical machinery. We avoid this
problem by basing proofs on high school algebra instead of linear alge-
bra, abstract algebra, or complex analysis. This lets us emphasize the
power of two fundamental ideas, homogeneous coordinates and intersec-
tion multiplicities.

Every line can be transformed into the x-axis, and every conic can
be transformed into the parabola y = x2. We use these two basic facts
to analyze the intersections of lines and conics with curves of all degrees,
and to deduce special cases of Bezout’s Theorem and Noether's Theo-
rem. These results give Pascal’'s Theorem and its corollaries about poly-
gons inscribed in conics, Brianchon's Theorem and its corollaries about
polygons circumscribed about conics, and Pappus’ Theorem about hexa-
gons inscribed in lines. We give a simple proof of Bezout's Theorem for
curves of all degrees by combining the result for lines with induction on
the degrees of the curves in one of the variables. We use Bezout's Theo-
rem to classify cubics. We introduce elliptic curves by proving that a cu-

vii



viii Preface

bic becomes an abelian group when collinearity determines addition of
points; this fact plays a key role in number theory, and it is the starting
point of the 1995 proof of Fermat's Last Theorem.

The 2nd Edition differs from the 1st in Chapter IV by using power se-
ries to parametrize curves. We apply parametrizations in two- ways: to
derive the properties of intersection multiplicities employed in Chapters
I-1III and to extend the duality of curves and envelopes from conics to
curves of higher degree.

The 2nd Edition also has a simpler proof of duality for conics in The-
orem 7.3. There are new Exercises 5.7, 6.21-6.23, 7.17-7.23, 11.21, and
11.22 on conics, foci, and director circles.

A one-semester course can skip Sections 13 and 16, whose results are
not needed in other sections. The more technical parts of Sections 14
and 15 can be covered lightly.

The exercises provide practice in using the results of the text, and
they outline additional material. They can be homework problems when
the book is used as a class text, and they are optional otherwise.

I am greatly indebted to Harry D’'Souza for sharing his expertise, to
Richard Alfaro for generating figures by computer, to Richard Belshoff
for correcting errors, and to Renate McLaughlin, Kenneth Schilling, and
my late brother Michael Bix for reviewing the manuscript. I am also
grateful to the students at the University of Michigan-Flint who tried
out the manuscript in classes.

Robert Bix
Flint, Michigan
November 2005
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 Intersections
~ of Curves

CHAPTER

Introduction and History
Introduction

An algebraic curve is the graph of a polynomial equation in two variables
x and y. Because we consider products of powers of both variables, the
graphs can be intricate even for polynomials with low exponents. For
example, Figure 1.1 shows the graph of the equation

r? = cos 20

in polar coordinates. To convert this equation to rectangular coordinates
and obtain a polynomial in two variables, we multiply both sides of the
equation by r? and use the identity cos 20 = cos? 0 — sin? 0. This gives
r* = r? cos? 0 — r? sin? 0. (1)
We use the usual substitutions r? = x? + y2, rcos0 = x, and rsin0 = y to
rewrite (1) as
(2% + y)? = 2% — 2.
Multiplying this polynomial out and collecting its terms on the left gives
2y 4yt — x4yt =0. (2)

Thus Figure 1.1 is the graph of a polynomial in two variables, and so it is
an algebraic curve.

We add two powerful tools for studying algebraic curves to the famil-
iar techniques of precalculus and calculus. The first is the idea that

1



2 1. Intersections of Curves

Figure 1.1

curves can intersect repeatedly at a point. For example, it is natural to
think that the curve in Figure 1.1 intersects the x-axis twice at the origin
because it passes through the origin twice. We develop algebraic tech-
nigues in Section 1 for computing the number of times that two algebraic
curves intersect at the origin.

The second major tool for studying algebraic curves is the system of
homogeneous coordinates, which we introduce in Section 2. This is a
bookkeeping device that lets us study the behavior of algebraic curves
at infinity in the same way as in the Euclidean plane. Erasing the distinc-
tion between points of the Euclidean plane and those at infinity simpli-
fies our work greatly by eliminating special cases.

We combine the ideas of Sections 1 and 2 in Section 3. We use homo-
geneous coordinates to determine the number of times that two alge-
braic curves intersect at any point in the Euclidean plane or at infinity.
We also introduce transformations, which are linear changes of coordi-
nates. We use transformations throughout our work to simplify the equa-
tions of curves.

We focus on the intersections of lines and other curves in Section 4.
If a line [ is not contained in an algebraic curve F, we prove that the
number of times that [ intersects F, counting multiplicities, is at most
the degree of F. This introduces one of the main themes of our work:
the geometric significance of the degree of a curve. We also characterize
tangent lines in terms of intersection multiplicities.

History

Greek mathematicians such as Euclid and Apollonius developed geome-
try to an extraordinary level in the third century s.c. Their algebra,
however, was limited to verbal combinations of lengths, areas, and
volumes. Algebraic symbols, which give algebraic work its power, arose
only in the second half of the 1500s, most notably when Frangois
Vieta introduced the use of letters to represent unknowns and general
coefficients.

Geometry and algebra were combined into analytic geometry in the
first half of the 1600s by Pierre de Fermat and René Descartes. By assert-
ing that any equation in two variables could be used to define a curve,



Introduction and History 3

they expanded the study of curves beyond those that could be con-
structed geometrically or mechanically.

Fermat found tangents and extreme points of graphs by using essen-
tially the methods of present-day calculus. Calculus developed rapidly in
the latter half of the 1600s, and its great power was demonstrated by
Isaac Newton and Gottfried Leibniz. In particular, Newton used implicit
differentiation to find tangents to curves, as we do after Theorem 4.10.

Apart from its role in calculus, analytic geometry developed gradually.
Analytic geometers concentrated at first on giving analytic proofs of
known results about lines and conics. Newton established analytic geom-
etry as an important subject in its own right when he classified cubics, a
task beyond the power of synthetic—that is, nonanalytic—geometry. We
derive one of Newton'’s classifications of cubics in Chapter III.

While Fermat and Descartes were founding analytic geometry in the
first half of the 1600s, Girard Desargues was developing a new branch of
synthetic geometry called projective geometry. Renaissance artists and
mathematicians had raised questions about drawing in perspective.
These questions led Desargues to consider points at infinity and projec-
tions between planes, concepts we discuss at the start of Section 2. He
used projections between planes to derive a remarkable number of theo-
rems about lines and conics. His contemporary, Blaise Pascal, took up
the projective study of conics, and their work was continued in the late
1600s by Philippe de la Hire.

Projective geometry languished in the 1700s as calculus and its appli-
cations dominated mathematics. Work on algebraic curves focused on
their intersections, although multiple intersections were not analyzed
systematically until the nineteenth century, as we discuss at the start of
Chapter IV. We introduce intersection multiplicities in Section 1 so that
we can automatically handle the special cases of theorems that arise
from multiple intersections.

At the start of the 1800s, Gaspard Monge inspired a revival of syn-
thetic geometry. His student Jean-Victor Poncelet championed synthetic
projective geometry as a branch of mathematics in its own right. Mathe-
maticians argued vigorously about the relative merits of synthetic and
analytic geometry, although each subject actually drew strength from
the other.

Analytic geometry was revolutionized when homogeneous coordi-
nates were used to coordinatize the projective plane. Augustus Mébius
introduced one system of homogeneous coordinates, barycentric coordi-
nates, in 1827. He associated each point P in the projective plane with
the triples of signed weights to be placed at the vertices of a fixed trian-
gle so that P is the center of gravity. In 1830, Julius Pliicker introduced
the system of homogeneous coordinates that is currently used, which we
introduce in Section 2.

Throughout the 1830s, Pliicker used homogeneous coordinates to
study curves. He obtained remarkable results, which we discuss in the
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History for Chapter IV. Together with Riemann’s work, which we dis-
cuss at the start of Chapter III, Pliicker’s results provided much of the in-
spiration for the subsequent development of algebraic geometry.

Mobius and Plicker also considered maps of the projective plane
produced by invertible linear transformations of homogeneous coordi-
nates. These are the transformations we discuss in Section 3. Much of
nineteenth-century algebraic geometry was devoted to studying invari-
ants, the algebraic combinations of coordinates of n-dimensional space
" that are preserved by invertible linear transformations. Founded
by George Boole in 1841, invariant theory was developed in the latter
half of the 1800s by such notable mathematicians as Arthur Cayley,
James Sylvester, George Salmon, and Paul Gordan. Methods of abstract
algebra came to dominate invariant theory when they were introduced
by David Hilbert in the late 1800s and Emmy Noether in the early
1900s.

§1. Intersections at the Origin

An important way to study a curve is to analyze its intersections with
other curves. This analysis leads to the idea of two curves intersecting
more than once at a point. We devote this section to studying multiple
intersections at the origin, where the algebra is simplest.

A polynomial f or f(x,y) in two variables is a finite sum of terms of the
form ex'y’, where the coefficient € is a real number and the exponents
i and j are nonnegative integers. We say that a term ex'y’ has degree i + j
and that the degree of a nonzero polynomial is the maximum of the de-
grees of the terms with nonzero coefficients. For example, the six terms
of the polynomial

Y =2y +7xy —3x* +7x+ 5

have respective degrees 3, 4, 2, 2, 1, and 0, and the degree of the poly-
nomial is 4. We work over the real numbers exclusively until we introduce
the complex numbers in Section 10.

We define an algebraic curve formally to be a polynomial f(x, y) in two
variables, and we picture the algebraic curve as the graph of the equa-
tion f(x,y) = 0 in the plane. We abbreviate the term “algebraic curve”
to “curve” because the only curves we consider are algebraic; that is,
they are given by a polynomial equation in two variables. We refer both
to the “curve f(x,y)” and to the “curve f(x, y) = 0,” and we even rewrite
the equation f(x,y) = 0 in algebraically equivalent forms. For example,
we refer to the same curve as y — x%, y — x? = 0, and y = x%. Of course,
we say that the curve f(x, y) contains a point (a, b) and that the point lies
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Figure 1.1

Figure 1.2

on the curve when f(a, b) = 0. When the polynomial f(x, y) is nonzero,
we refer to its degree as the degree of the curve f(x,y) = 0.

One reason we define a curve formally to be a polynomial rather than
its graph is to keep track of repeated factors. We imagine that the points
of the graph that belong to repeated factors are themselves repeated. For
example, we think of the curve

(y = ")y — %)°
as two copies of the parabola y = x? and three copies of the line y = x.
This idea helps the geometry reflect the algebra.

We turn now to the idea that curves can intersect more than once at a
point. As we noted in the chapter introduction, it is natural to think that
the curve in Figure 1.1 intersects the x-axis twice at the origin because
the curve seems to pass through the origin twice.

For a different type of example, note that two circles with overlapping
interiors intersect at two points (Figure 1.1). As the circles move apart,
their two points of intersection draw closer together until they coalesce
into a single point P (Figure 1.2). Accordingly, it seems natural to think
that the circles in Figure 1.2 intersect twice at P.

Similarly, any line of positive slope through the origin intersects
the graph of y = x® in three points (Figure 1.3). As the line rotates about
the origin toward the x-axis, the three points of intersection move to-
gether at the origin, and they all coincide at the origin when the line
reaches the x-axis. Accordingly, it is natural to think that the curve
y = x° intersects the x-axis three times at the origin.

Let O be the origin (0,0). We assign a value Io(f,g) to every pair
of polynomials f and g. We call this value the intersection multiplicity of
f and g at O, and we think of it as the number of times that the curves
f(x,y) = 0 and g(x, y) = 0 intersect at the origin.
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Figure 1.3

What properties should the assignment of the values Io(f, g) have?
The proof of Theorem 1.7 will show that we need to allow for the possi-
bility that curves intersect infinitely many times at the origin. We expect
the following result, where the symbol co denotes infinity:

Property 1.1
Io(f, g) is a nonnegative integer or co. O

The order in which we consider two curves should not affect the num-
ber of times they intersect at the origin. This suggests the next property:

Property 1.2
Io(f, 8) = Io(g, f)- 0O

If either of two curves fails to contain the origin, they do not intersect
there, and their intersection multiplicity at the origin should be zero. On
the other hand, if both curves contain the origin, they do intersect there,
and their intersection multiplicity should be at least 1. Thus, we expect
the following property to hold:

Property 1.3
Io(f,g) =1 if and only if f and g both contain the origin. O

Of course, we consider oo to be greater than every integer, so that
Property 1.3 allows for the possibility that Io(f,g) = co when f and g
both contain the origin.

The y- and x-axes seem to intersect as simply as possible at the origin,
and so we expect them to intersect only once there. Since the axes have
equations x = 0 and y = 0, we anticipate the following property:

Property 1.4
IO(x) y) =1. D
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Let f, g, and h be three polynomials in two variables, and let (a, b) be
a point. The equations

fla,b)=0 and  g(a,b)=0 (1)
imply the equations
fla,b) =0 and gla,b) + f(a,b)h(a,b) = 0. (2)

Conversely, the equations in (2) imply the equations in (1). In short, f
and g intersect at (a, b) if and only if f and g + fh intersect there. Gener-
alizing this to multiple intersections at the origin suggests the following:

Property 1.5
Io(f,8) = Io(f,g + fh). (.

One reason to expect that Property 1.5 holds for multiple as well
as single intersections is the discussion accompanying Figures 1.1-1.3,
which suggests that we can think of a multiple intersection of two curves
as the coalescence of single intersections.

The equations f(a,b) =0 and g(a,b)h(a,b) =0 hold if and only if
either f(a,b) = 0 =g(a,b) or f(a,b) =0 = h(a,b). Thus, f and gh inter-
sect at a point if and only if either f and g intersect there or f and h
intersect there. That is, we get the points where f and gh intersect by
combining the intersections of f and g with the intersections of f and
h. As above, we expect this property to extend to multiple intersections
because we think of a multiple intersection as the coalescence of single
intersections. Thus, we expect the following:

Property 1.6
Io(f, gh) = Io(f, &) + Io(f, h). O

The value of Io(f, g) does not depend on the order of f and g (by Prop-
erty 1.2). Thus, Property 1.5 states that the intersection multiplicity of
two curves at the origin remains unchanged when we add a multiple of
either curve to the other. Likewise, Property 1.6 shows that we can break
up a product of two polynomials in either position of Io(—, ).

Property 1.6 reinforces the idea that repeated factors in a polynomial
correspond to repeated parts of the graph. For example, Properties 1.2,
1.4, and 1.6 show that

Io(Xz,y) = ZIo(X, y) =2

When we think of x> = 0 as two copies of the line x = 0, it makes sense
that ¥ = 0 intersects the line y = 0 twice at the origin, because each of
the two copies of x = 0 intersects y = 0 once.
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We use the term intersection properties to refer to Properties 1.1-1.6
and further properties introduced in Sections 3, 11, and 12. We must
prove that we can assign values Io(f, g) for all pairs of curves f and g so
that Properties 1.1-1.6 hold. We postpone this proof until Chapter IV so
that we can proceed with our main task, using intersection properties to
study curves. Of course, the results we obtain depend on our proving the
intersection properties in Chapter IV.

In the rest of this section, we show how Properties 1.1-1.6 can be used
to compute the intersection multiplicity of two curves at the origin. The
discussion accompanying Figures 1.1-1.3 suggests that Io(f, g) measures
how closely the curves f and g approach each other at the origin. When
f is a factor of g, the graph of g = 0 contains the graph of f = 0. Thus, we
are led to expect the following result:

Theorem 1.7
If f and g are polynomials such that f is a factor of g and the curve f =0
contains the origin O, then Io(f, g) is 0.

Proof

Consider first the case where g is the zero polynomial 0. (The theorem
includes this case because the zero polynomial has every polynomial f
as a factor, since 0 = f - 0.) Since Io(f,0) > 1 (by Property 1.3), it follows
for every positive integer n that

n < nlo(f,0) = Io(f,0") (by Property 1.6)

= IO(f’ 0)'
Because this holds for every positive integer n, Io(f,0) must be co.

In general, if g is any polynomial that has f as a factor, we can write
g = fh for a polynomial h. Then we have

Io(f, 8) = Io(f, fh)
=Io(f,fh — fh) (by Property 1.5)
= Io(f, 0) = 0,
by the previous paragraph. O
The proof of Theorem 1.7 shows why we needed to allow infinite
intersection multiplicities in Property 1.1.
The following result shows that we can disregard factors that do not

contain the origin when we compute intersection multiplicities at the
origin:

Theorem 1.8
If f, g, and h are curves and g does not contain the origin, we have

Io(f, gh) = Io(f, h).



