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Preface

The advent of very large scale integrated (VLSI) circuit and the development with
great speed of the modern communication technology have enabled us to design more
complicatedly, more conveniently and economically high performance supercomput-
ers and massive interconnection networks. The modern supercomputers achieve
their gains by increasing the number of processing elements, rather than by using
faster processors. The most difficult technical problem in constructing a supercom-
puter will be the design of the interconnection network through which the processors
communicate. Selecting an appropriate and adequate topological structure of an in-
terconnection network will become a critical issue, on which considerable research
effort has been made over the past decades. This book is aimed to attract the
readers’ attention to such an important research area.

Graph theory is a fundamental and powerful mathematical tool for designing
and analyzing interconnection networks, since the topological structure of an inter-
connection network is essentially a graph. This fact has been universally accepted
by computer scientists and engineers. This book provides the most basic problems,
concepts and well-established results on the topological structure and analysis of
interconnection networks in the language of graph theory. The material originates
from a vast amount of literature, but the theory presented is developed carefully
and skillfully. The treatment is generally self-contained, and most stated results are
proved.

The book consists of four parts, seventeen chapters. The first part, consisting of
two chapters, introduces how to model an interconnection network by a graph and
provides a self-contained exposition of the basic graph-theoretic concepts, terminolo-
gies, notations and the corresponding backgrounds of networks as well as the basic
principles of network design. Some basic results on graph theory used in the book
are stated. The second part, consisting of four chapters, presents three major meth-
ods for large-scale network design: the line graph method, the Cayley method and
the Cartesian product method. The fundamental properties of graphs constructed
by these methods are presented in details. As applications of these methods, the
third part, consisting of five chapters, provides four classes of the most well-known
network structures: the hypercube, the de Bruijn, the Kautz and the double loop
networks and their many desirable properties as well. At the last chapter in this
part, other common network structures such as mesh, grid, pyramid, cube-connected



ii Preface

cycle, butterfly, omega, and shuffle-exchange networks are simply mentioned. The
fourth part, consisting of six chapters, is a main part in the book. It presents some
basic issues and research results in analysis of fault-tolerant network consisting of
six research aspects, one of each chapter, involving routings, the fault-tolerant diam-
eter, Menger-type problems in parallel systems, the wide diameter, the generalized
independence and domination numbers, and restricted fault tolerance, from which
the reader can easily find some interesting research issues to study further.

The book is developed from the original version titled Topological Structure and
Analysis of Interconnection Networks, published by Kluwer Academic Publishers in
2001. During the latest decade, some topics have made a new development and
obtained some new results. In this version, we have made a great adjustment on the
total framework and enriched some new research results.

Reading the book is not difficult for readers familiar with elementary graph
theory and group theory. The book will be useful to those readers who intend
to start research in design and analysis of interconnection network structures, and
students in computer science and applied mathematics, theoretic computer scientists,
engineers, designer of interconnection networks, applied mathematicians and other
readers who are interested in network theory.

I am indebted to many friends and colleagues for their interest in and help with
this project. A number of people have read the various versions of this book and
offered useful comments and advice as a result. In particular, I thank Xu Min, Ma
Meijie, Yang Chao, Huang Jia, Zhou Shuming, Hu Futao, He Weihua, Li Xiangjun,
Hong Zhenmu. They read through the entire manuscript, corrected many technical
errors and provided all graphs. Thank Graduate School of USTC and National
Natural Science Funds for providing funds to support my research on these topics
involved in this book since 1997.

Finally, I would like to thank my wife, Qiu Jingxia, for her support, understand-
ing and love, without which this work would have been impossible.

Xu Junming
(xujm@ustc.edu.cn)
June 2011
USTC, Hefei
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Part 1
Networks and Graphs

A connection pattern of components in a system is called an interconnection network
of the system, which can be modeled by a graph. This fact has been universally
accepted and used by computer scientists and engineers. Moreover, practically it
has been demonstrated that graph theory is a very powerful mathematical tool for
designing and analyzing topological structure of interconnection networks.

The first part consists of two chapters. As the topological structure of a network
is a graph, in the first chapter, we will briefly recall some basic concepts, notations
and main results on graph theory used in this book as well as the corresponding
backgrounds in networks. In last section of this chapter, we will use the language of
graph theory to introduce some fundamental principles that we should conform to
in the process of design of an interconnection network.

According to the basic principles of network design, one desires that designed
networks are provided with high regularity and symmetry. In the second chapter, we
will introduce such a special class of graphs, called transitive graphs, which possess
high regularity and symmetry, thus, is an important and ideal class of topological
structures of interconnection networks.
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Chapter 1
Fundamentals of Networks and Graphs

In this chapter, we will briefly recall some basic concepts and notations on graph
theory used in this book as well as the corresponding backgrounds in networks.
Some basic results on graph theory will be stated, but some proofs will be omitted.
For a comprehensive treatment of the graph-theoretic concepts and results discussed
herein, the reader is referred to any standard text-book on graph theory, for example,
Bondy and Murty [59], Chartrand and Lesniak [83], or Xu [503].

1.1 Graphs and Networks

In this section, we will introduce some concepts on graphs as well as how to model
an interconnection network by a graph. Although they have been contained in
any standard text-book on graph theory, these concepts defined by one author are
different from ones by another. In order to avoid quibbling it is necessary to present
a formidable number of definitions.

A graph G is an ordered pair (V, E), where both V and E are non-empty sets,
V = V(G) is the vertez-set of G, elements in which are called vertices of G; E =
E(G) C V x V is the edge-set of G, elements in which are called edges of G. The
number of vertices of G, also called order of G, is denoted by v(G). The number of
edges of G, also called size of G, is denoted by &(G).

Two vertices corresponding an edge are called the end-vertices of the edge. The
edge whose end-vertices are identical is a loop. The end-vertices of an edge are said
to be incident with the edge, and vice versa. Two vertices are said to be adjacent
if they are two end-vertices of some edge; two edges are said to be adjacent if they
have an end-vertex in common.

If E C V xV is considered as a set of ordered pairs, then the graph G = (V, E) is
called a directed graph, or digraph for short. For an edge e of a digraph GG, sometimes,
called a directed edge or arc, if a = (z,y) € E(G), then vertices z and y are called
the tail and the head of e, respectively; and e is called an out-going edge of x and an
in-coming edge of y.

If E € V xV is considered as a set of unordered pairs, then the graph G = (V, E)
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is called an undirected graph. Note that an undirected graph does not admit loops.
Usually, it is convenient to denote an unordered pair of vertices by xy or yz instead
of {z,y}. Edges of an undirected graph are sometimes called undirected edges.

A graph G is empty if €(G) = 0, denoted by K¢, and non-empty otherwise. An
undirected graph can be thought of as a particular digraph, a symmetric digraph,
in which there are two directed edges called symmetric edges, one in each direction,
corresponding to each undirected edge. Thus, to study structural properties of
graphs for digraphs is more general than for undirected graphs. A digraph is said
to be non-symmetric if it contains no symmetric edges.

Two graphs G and H are isomorphic, denoted by G = H, if there exists a
bijective mapping 6 between V(G) and V(H) satisfying the adjacency-preserving
condition:

(z,y) € E(G) & (0(x),6(y)) € E(H).
The mapping 6 is called an isomorphism between G and H.

Up to isomorphism, there is just one complete graph of order n, denoted by K,
and one complete bipartite graph G(X UY, E), denoted by K,,, if |X| = m and
|Y| = n, where {X,Y} is a bipartition of V(G). It is customary to call K ,, a star.

The graphs shown in Figure 1.1 are a complete undirected graph K35, a complete
digraph K3 and a complete bipartite undirected graph K3 3, respectively.

(a) a complete undirected graph K5 (b) a complete digraph K3 (c) K3,3

Figure 1.1 Two undirected graphs K5, K33 and a digraph K3

Throughout this book the letter G always denotes a graph, which is directed or
undirected according to the context-if it is not specially noted.

A system, following Hayes [214], may be defined informally as a collection of
objects, called components, connected to form a coherent entity with a well-defined
function or purpose. The function performed by the system is determined by those
performed by its components and by the manner in which the components are in-
terconnected.

For a computer system, its components might include processors, control units,
storage units and I/O (input/output) equipments (maybe include switches), and its
function is to transform a set of input information items (e.g., a program and its
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data set) into output information (e.g., the results computed by the program acting
on the data set).

A computer network is a system whose components are autonomous computers
and other devices that are connected together usually over long physical distance.
Each computer has its own operating system and there is no direct cooperation
between the computers in the execution of programs.

A multiple processor system (MPS) is a system whose components are two or
more autonomous processors. Thus, an MPS may be thought of as an integrated
computer system containing two or more processors. The qualification “integrated”
implies that the processors cooperate in the execution of programs. MPS’s consisting
of thousands of processors are capable of executing parallel algorithms thus solving
large problems in real time.

Following Saad and Schultz [401], there are essentially two broad classes of MPS
architectures. The first class of MPS’s is that its n identical processors are intercon-
nected via a large switching network to n memories. The diagram of such a class of
MPS architectures is shown in Figure 1.2. Variations on this scheme are numerous,
but the essential feature here is the switching network. The main advantage of this
type of configuration is that it enables us to make the data access transparent to
the user who may regard data as being held in a large memory which is readily
accessible to any processor. However, this type of memory-sharing architectures
can not easily take advantage of some inherent properties in problems, for example,
proximity of data where communication is local. Moreover, the switching network
becomes exceedingly complex to build as the number of processors increases.

1/0

Interconnection

Processor 2

Processor'n | ————1

Figure 1.2

Network

1/0

The first class of MPS architecture

The second important class of MPS architecture is that its processors, in which
each processor has its own local memory, are interconnected according to some
convenient pattern. The diagram of such a class of MPS architectures is shown in
Figure 1.3. In this type of machine, there are no shared memory and no global
synchronization. Moreover, intercommunication is achieved by message passing and
computation is data driven. The main advantage of such architectures, often referred
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to as ensemble architectures, is the simplicity of their design. The processors are
identical, or are of a few different kinds, and can therefore be fabricated at relatively

low cost.
| Processor 1 | T T
{ I Memor}j | 1/0 I
I Processor 2 | T T Interconnection
: l Memory I I 1/0 I Network
| Processor n | T I
| Memory | I I/O]

Figure 1.3 The second class of MPS architecture

A basic feature for a system is that its components are connected together by
physical communication links to transmit information according to some pattern.
Moreover, it is undoubted that the power of a system is highly dependent upon the
connection pattern of components in the system.

A connection pattern of components in a system is called an interconnection
network, or network for short, of the system. Topologically, an interconnection
network can essentially depict structural feature of the system. In other words, an
interconnection network of a system provides logically a specific way in which all
components of the system are connected.

It is quite natural that an interconnection network may be modeled by a graph
whose vertices represent components of the network and whose edges represent phys-
ical communication links, where directed edges represent one-way communication
links and undirected edges represent two-way communication links. Such a graph is
called the topological structure of the interconnection network, or network topology
for short.

For example, a network based on K, as its topological structure is often called a
fully connected network. Bipartite graphs are often used to model cross-bar switches
in the first class of MPS architectures. For example, Figure 1.4 shows a 3 x 3
cross-bar switch and its topological structure K3 3.

Conversely, any a graph can also be considered as a topological structure of some
interconnection network. Topologically, graphs and interconnection networks are the
same things. Thus we will confuse a graph with a network. Instead of speaking a
network, components, and links we speak of a graph, vertices and edges. The graph
is directed or undirected, depending upon that the links are one-way or two-way in
the network.

Usually the network topologies can be grouped into two categories: dynamic and
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static. In a dynamic system such as the first class of MPS’s mentioned above the
links can be reconfigured by setting the network’s active switching elements. In a
static system such as the second class of MPS’s the communication links between
processors are passive and reconfiguration of the system is not possible. In this
book, we are mainly interested in a static topological structure of interconnection
networks.

2] o] =

L]
g, ¥
./
"3 Y
N/

iy

Figure 1.4 A 3 x 3 cross-bar switch and its topological structure

1.2 Basic Concepts and Notations

In this section, we will give some basic terminologies, notations and results on graphs
used in this book, including subgraphs, degrees, paths, cycles, connected graphs, Eu-
ler circuits, Hamilton cycles, adjacency matrices, matchings, independence numbers,
dominating numbers, and so forth.

A subgraph is one of the most basic concepts in graph theory. We first recall
various subgraphs induced by operations of graphs.

Suppose that G = (V, ) is a graph. A graph H is called a subgraph of G, denoted
by H C G, if V(H) C V(G) and E(H) C E(G). A subgraph H of G is called a
spanning subgraph if V(H) = V(G).

The complement G° of a graph G is the graph with the vertex-set V, and (z,y) €
E(G°) & (z,y) ¢ E(G).

Let S be a non-empty subset of V(G). The induced subgraph by S, denoted by
G|[S], is a subgraph of G whose vertex-set is S and whose edge-set is the set of those
edges of G that have both end-vertices in S. The symbol G — S denotes the induced
subgraph G[V'\ S].

Let B be a non-empty subset of E(G). The edge-induced subgraph by B, denoted
by G[B], is a subgraph of G whose vertex-set is the set of end-vertices of edges in
B and whose edge-set is B. The notation G — B denotes a subgraph of G obtained
by deleting all edges in B. Similarly, the graph obtained from G by adding a set of
edges F is denoted by G + F, where F' C E(G°).
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Subgraphs may be used to model a subnetwork of an interconnection network.
If G is the topological structure of an interconnection network, then G + F' means
addition of a set of links F' to the network to improve its performance; G — S and
G — B mean that the network contains a set S of faulty processors and a set B of
faulty links, respectively.

It is essential that an interconnection network should contain some given kinds of
subnetworks. It is because that for a computing system its function is the execution
of some algorithms.

Following Hayes [213], an algorithm may be modeled by a graph whose vertices
represent the facilities required to execute the algorithm, and whose edges represent
the links required among these facilities. Such a graph is called a communication
pattern of the algorithm. Thus, an algorithm is executable by a computing system
G if and only if its communication pattern is isomorphic to a subgraph of G.

Let G and G2 be subgraphs of G. We say that G; and G5 are disjoint if they
have no vertices in common, and edge-disjoint if they have no edges in common.
The union G; U Gy of G; and G is the subgraph with vertex-set V(G;) U V(G2)
and edge-set E(G1) U E(G3); if G1 and G are disjoint, we sometimes denoted their
union by G; + G2. The intersection G; N G2 of G; and G; is defined similarly if
V(Gl) 4 V(Gz) # O.

The join GV H of two disjoint undirected graphs G' and H is the undirected
graph obtained from G + H by joining each vertex of G to each vertex of H.

We now recall the concepts related to degrees of a graph. We first consider
undirected graphs. Let G be an undirected graph and =z € V(G). We use the
notation Eg(z) to denote a set of edges incident with  in G. The cardinality
|Eg(z)| is called the degree of z, denoted by dg(z).

When an interconnection network is modeled by a graph G, the degree dg(z) of
a vertex = in G corresponds the number of available connections to the component
z in the network, which is bounded by the number of I/O devices attached to the
component.

A vertex of degree d is called a d-degree verter. 0-degree vertex is called an
1solated verter. A vertex is called to be odd or even if its degree is odd or even.
A graph G is d-regular if dg(z) = d for each z € V(G), and G is regular if it is
d-regular for some d, and d is the regularity of G. A graph G is quasi-regular if there
are two distinct integers a and b such that dg(z) = a or b for any z € V(G). The
parameters

A(G) = max{dg(z) : € V(G)}, and
0(G) = min{dg(z) : z € V(G)}

are the mazimum and minimum degree of G, respectively. For zy € E(G), the



