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Introduction

This volume contains the proceedings of the Third Matscience
Summer School held at Bangalore in September, 1966. The special
feature of these proceedings was two systematic series of lectures,
one by F. Pham of C.E.N., Saclay and CERN, Geneva and the other
by G. Rickayzen of the University of Kent, Canterbury.

Pham dwelt at length on the applications of the methods of alge-
braic topology and differential forms to the study of the analytic
properties of S-matrix theory, in particular, with reference to the
location of singularities of the multiple scattering processes. This
exposition was a natural sequel to the lectures of V. L. Teplitz, pub-
lished in an earlier volume of this series.

Rickayzen discussed in detail the latest theory of superconductivity.
Other lectures were those of Scadron, who dealt with some formal
features of potential scattering theory, and B. M. Udgaonkar and
A. N. Mitra, who spoke on certain aspects of bootstraps and quark
models, respectively.

The contributions in pure mathematics in this volume include two
lectures by S. K. Singh, one on the field of Mikusinski operators and
another on Riemann mapping theorem, and a lecture on cosine func-
tionals by P. L.. Kannappan.

One of the highlights of the symposium was a lecture by S. K.
Srinivasan who is keeping alive the interest of the Madras group in
the theory of stochastic processes and who, in particular, has enlarged
the domain of the application of the theory of product densities.

Alladi Ramakrishnan
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Superconductivity

G. RICKAYZEN

UNIVERSITY OF KENT AT CANTERBURY
Canterbury, England

1. INTRODUCTION

I wish to present a review of our present understanding of the
phenomenon of superconductivity. It was recognized in the early
work of London and others that superconductivity is a cooperative
effect of the electrons such that they condense into a many-body
state described by a single wave function and this state is such
that it resists deformations. The concept of such a cooperative
effect is inherent in the wave function of Bardeen, Cooper, and
Schrieffer' (referred to hereafter as BCS) where the Bloch states are
paired, the different pairs being both occupied or unoccupied, in the
configurations which are coherently superposed in the many-body
wave function.

Landau® attempted to account for the rigidity of the wave func-
tion in terms of the low-lying excitations of the system. He was
concerned with superfluidity but his analysis is easily carried over
to superconductivity. If we suppose the system is uniform and
isotropic, then in the ground state it will possess excitations with
momentum p and energy e(p). If the whole system is given a velocity
v, there will be a scattering mechanism which will tend to restore
the system to equilibrium in the original rest frame. By Galilean
invariance, in this frame the energy of the excitations is e(p) — p-v.
If this is positive, electrons will remain in the condensate and

1



2 G. Rickayzen

superconductivity will be maintained. If it is negative, electrons
will leave the condensate to become excitations and superconduc-
tivity will tend to be destroyed. Hence, Landau’s criterion for
superconductivity is that e(p) — p-v should be positive for all p. In
the worst case of p parallel to v, this requires

e(—p)>v

Ipl

In a superconductor p = p,, the Fermi momentum. Hence, the
criterion for superconductivity is that there should be no excitations
of infinitely small energy, that is, there should be a gap in the
spectrum of excitations. In the theory of BCS, there is indeed a gap
and Landau’s criterion is satisfied.f

It is now generally realized, however, that although Landau’s
criterion may be sufficient for superconductivity it is by no means
necessary. Both theory and experiment now confirm that it is possi-
ble to have gapless superconductivity in, for example, thin films in
a high parallel field® in a type-1I superconductor when the field lies
between H,, and H.'and in a superconductor containing a suffi-
ciently high concentration of paramagnetic impurities.” Even in a
BCS-type superconductor at a finite temperature, Landau’s criterion
is broken because there are always phonons present to excite elec-
trons from the condensate. In fact, this is strictly another case of
gapless superconductivity.” Hence, in all the cases of practical
importance the criterion is not valid. How is this possible? It is
possible because, although the criterion shows when electrons will
start to leave the condensate to form thermal excitations it does not
show that all electrons will leave the condensate. In fact, electrons
continue to leave the condensate until positive energy (or free
energy) is required to create more. As long as some electrons remain
in the condensate, superconductivity continues. Hence, Landau’s
criterion gives only the velocity at which some electrons leave the
condensate, that is, it gives the velocity at which the density of
superconducting electrons ny, becomes less than the density of con-
duction electrons n. Since the criterion is broken in all the cases
mentioned above, we expect ng = n only in a pure, homogeneous

1Strictly, one cannot apply the argument of Galilean invariance to a super-
conductor, because of the existence of the lattice. Most theoretical models of
superconductivity including that of BCS, however, are Galilean invariant and
lead to energy spectra of the form assumed above.



Superconductivity 3

superconductor at the absolute zero. This conclusion is supported
by many calculations. (Experiments usually do not measure ng
directly.)

If Landau’s condition is not necessary for superconductivity,
then what condition is? The answer is given directly in terms of
the wave function or density matrix. In simplest terms it is that in
a superconductor we have a new macroscopic variable F(r) defined
by

F(r) = <’ll'1(r)‘ll‘.(r)>

where Jr,(r) is a field operator for electrons.t Here, the average is a
quantum and thermodynamic average. If one also averages over
small but macroscopic regions of space, one has that for a macro-
scopically uniform system in the absence of magnetic fields F(r) has
the form

F(r) = Fp)e'»

The vector p represents the flow of the system, and the function
F(p) is determined by the condition that the system be in thermo-
dynamic equilibrium subject to the condition that the phase of
F(r) be p-r. In the BCS theory, a function with phase (p-r) arises
from the pairing of (k 4+ p/2, 1) with (—k + p/2, |).

The states corresponding to different values of p for which F(p)
is non-zero are such that the excitation energy of an electron in any
one of them is positive and the matrix element of any single particle
operator between any two of them is zero. Hence, one expects that
scattering cannot reduce any one of these states to another; for each
p we have a different state of metastable equilibrium. The condition,
then, for superconductivity is that, for small p, F(p) should not be
zero.

If this is true, one should be able to prove it. In fact, when
impurity scattering is important, this has been shown by direct
calculation for a number of different models.”® Impurity scattering,
however, is elastic and is, therefore, particularly inefficient for
destroying superconductivity. One should show also that inelastic
scattering such as scattering by phonons, does not destroy supercon-
ductivity. This has been done by considering the connection between

+This method assumes that the eigenstates do not have a definite number
of particles present. An alternative method which allows eigenstates with de-
finite numbers of particles has been given by Yang.”
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the Meissner effect and the infinite conductivity.f [More recently,
this question has also been discussed by L. Pi¢man (see Ref. 14).]
We propose to review this work here. Only the case of a simply
connected superconductor will be considered since the problem of
the persistent current in a multiply connected superconductor has
been considered by Wentzel."

2. MACROSCOPIC ANALYSIS

First, we consider what quantities we will have to calculate
from the microscopic theory and what conditions they must satisfy
in order that the Meissner effect and the infinite conductivity
follow. Both these effects are weak field effects so we shall consider
only the response of the system which is linear in the applied fields.
Further, since both effects occur in transverse fields, we shall con-
sider only the effects of such fields. Since the magnetic field and
electric field are not independent in a general transverse field, we
need consider only the effect of an electric field.

If the superconductor is also macroscopically uniform, different
Fourier components will give rise to independent linear effects. The
response of the system will be described by the induced current
ji(q, ») and one component E(q, o) will give rise to the correspond-
ing current j,(q, ). Now, the only polar vector we can form from q
and a transverse field E which is linear in E is E itself. Hence, the
most general possible relation between j and E is

t—’f i, ©) = M@’“’) E(q, ©) )

where K(g, ») is an arbitrary function of » and of ¢, the modulus of
the vector q. The constants which appear in equation (2) are purely
conventional.

The response of the system to a uniform field is given by equa-

tIn a footnote to a recent preprint, P. C. Martin has argued that our con-
siderations are not necessary to show that the Meissner effect and infinite con-
ductivity go together. Once it is known that the system possesses a measureable
conductivity in the experimentalist’s sense, he argues, the two effects must imply
each other. Martin’s argument is very general but not obviously foolproof. If it
should survive the test of time, then this paper confirms it and shows that
according to the BCS theory a superconductor does possess a measureable con-
ductivity.
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tion (2) with q equal to zero. Hence, the frequency dependent con-
ductivity is
ic? 0
= — KO, o
o() = 7o K(0, )
For infinite conductivity we require that this should tend to infinity
as o tends to zero. If we are more specific and ask for the electrons
to behave at low frequencies like a gas of ng, freely accelerating
electrons then we require that as  tends to zero,
9 _ nsie’
ot m

This means that as o tends to zero,

2
K0, o) — 47rr:11§ée a positive constant 3)

To obtain the conditions for the Meissner effect we have to
consider the effect of a static magnetic field on the superconductor.
If the magnetic induction in the superconductor is B we have, from
Maxwell’s equations, that for a general field

iq x E= %"'
If the field is transverse, this can be rewritten
_woq X B
cq’
and the relation between induced current and magnetic field is

E =

4z . K
(g, 0) = K& g x B)
q
In the limit of static fields, this is
4r . iK(q,0
i@ 0 = — K@ 0) g x B
q
If a source jg is present, we have that B is determined by
curl B =47 (j, + j)

For a given source js, these equations can be solved for the in-
duction B. For the special case of a long, thin, superconductor
parallel to a uniform external field H with specular reflection of the
electrons at the boundary, the solution is easily obtained.' The
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induction at a distance z from the surface is
H +oo ez‘q:
By =—EL gl
@ == 4o
The behavior of B at large distances from the surface is determined
by the behavior of the integrand for small g. If we require that the

field decrease exponentially with distance at large distances from
the surface, then we must have

lim K(gq, 0) = positive constant
q—0

By analogy with equation (3), we shall write the constant as
4rnge’/mc*. Hence, for a Meissner effect in the above sense,

X __ dmnge’
lqlirol K(g,0) = = 4)

We see then that the two effects depend on the behavior of
K(g, w) as q and o tend to zero, the only difference being in the
order in which the limits are taken. One might surmise that the
order of the limits is irrelevant and that the two quantities (3) and
(4) are always equal. This would correspond with the idea of
Section (1) that the current carrying states are in metastable equi-
librium. Nevertheless, it is possible to construct a trivial example
where the limits are not equal. This is the case of a free electron
gas for which all the electrons are freely accelerate and so ng, is
equal to n, whereas there is no Meissner effect and ng, is zero.
However, this case includes no scattering to bring the system into
equilibrium with its surroundings. We might guess, therefore, that
when such scattering is present, the two limits are equal and the
phenomena are equivalent. This is the approach of Ref. 9 which we
review here.

3. FORMALITIES

We have shown that the effects depend on the one function
K(g, ®) which, to determine whether or not the effects exists, must
be calculated from the appropriate microscopic theory. We shall
delay introducing a specific theory for as long as possible, deriving
instead formal expressions for K(g, w) in terms of microscopic quan-
tities. In this way we shall be able to pinpoint the condition neces-
sary for the two phenomena to occur together.



