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Introduction

In 1972, Alfsen and Effros ([AE]) published a paper in which
they discussed certain problems concerning the isometrical structure
of Banach spaces. Using this paper as a starting point, a research
group at the Freie Universitit Berlin has been working on structural
problems of this type since the spring of 1973. During this period
the results achieved by the group have been published as papers,
theses, and preprints. The purpose of these notes is to give the
reader a more or less complete account of those results which can be

grouped under the heading vIP_structuren.

Let X be a real Banach space and 1 = p = », Two closed subspaces J,

i

J” of X are called complementary IP-summands if X is the algebraic

sum of J and J' and for every x € d, xt egt

lx + x*+||®

IzI® + flx*|® (if 15p< )

x + x*Il max{llxll, |x* |} (if p = = )

i. e. when the elements in J and J' behave like disjoint elements in
an Lp—space. The projection from X onto J corresponding to this de-

composition of X is called an Lp—projection and the set of all pro-

jections obtained in this way Ip.

1

1'- and I”-summands and the corresponding projections were first

studied by Cunningham ([ C11 and] ¢2]). Alfsen and Effros carried on
the investigation in the above-mentioned paper, in which probably the
most important results are the characterization of M-ideals by means

of an intersection property (an M-ideal is a closed subspace whose



Vi

polar is an L1—summand in the dual space) and the introduction of
the structure topology, with whose help one can prove a very genere-
lized form of the Dauns-Hofmann theorem. They also applied the con-

cepts to the most important concrete Banach spaces.

The general case, i. e. p not necessarily =1 0r = «, has hardly been
investigated at all, apparently. The main reason is that even very
simple questions (e. g. Is the intersection of two 1P-summends also
an Lp—summand) can only be answered if it is known that every pair
of Lp—projection commute « In the case of p = 1 or p = * this is
easily seen and can also be proved directly for Banach spaces where
the Clarkson inequality (cf. [ L] , p. 169) is valid for the rele-
vant p. Behrends has shown in [B2 ] that the answer to this question
is affirmative for all p # 2. Since any orthogonal projection in a
Hilbert space is an L2-projection this result does not hold for p=2.
On the other hand some important results hold for any complete
Boolean algebra of Lp-projections, not necessarily containing them
all. In chapters 3 - 5 we therefore formulate these results in the
general context,which in particular means that we can apply them to
the case p = 2 by considering maximal families of commuting pro-
jections.

Some authors ([cs],[E1]) have studied a natural generalization of
the concept of LP-summand. Let F be a mapping from R+xR+ into R+.

We call two subspaces J, J' of a Banach space X, P~summands, if X is

the algebraic direct sum of J§ and Jt and further F(|x|,|lx*|) =



Vil

lx + x*|| for all x in J, x* in J*. ([ cS] considers the special case
P(s,t) = f—1(f(s) + £(t)) for a continuous strictly monotone func-
tion f: n+ - R+.) It can be shown (see note at the end of chapter 1)
that if there are two nontriviél F-summands, one contained in the
other, then F = Fp for some p in [1,*1 whereby Fp(s,t) = (Sp+tp)1/p
for p<« and F _(s,t) = max {s,t} . In this case F-summands are of
course LP-summands so that a restriction of our consideration to the
latter does not involve any real loss of generality.

The main problem for choosing the material for these notes was that,
while in the case of p # 1, 2, «, the definitions, propositions,
proofs etc. are formally identical (differing only in the value of
p) for all p, in the case p = 1 and p = * the propositions are often
only valid in a modified form or cannot be proved by the same method
as in the general case. In the interest of uniformity we have there-
fore only mentioned those results which can be proved in more or
less the same way as in the general case. (some results which we
have left out for this reason can be found in [DGM]). The difference
in the behaviour of the case p = 1 and p = < as opposed to the other
values of p is basically due to the fact that Lp-projections in dual
spaces are necessarily w*—continuous for p > 1 but not for p = 1
(which in particular means that M-ideals are not necessarily 1=
summands). This result was proved independently by [#] and [Ei]

(in [E1]in a more general form for dual F-projections) although the
method of the proof is the same-as in [ CER], who only consider the

case p = o,
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These notes fall into two main parts - chapters 1-3 in which the
theory is developed and chapters 4-7 which deal with some appli-
cations. The contents of the individual chapters are as follows:
Chapter 1: The concept of an IP-summand is explained with the help
of some concrete examples. Although the proof of a lemma concerning
the effect of transposition to LP-summands and -projections is
given in full, the main theorem concerning the commutativity of LP-
projections is only stated. A sketched proof can be found in appen-
dix 1. It is shown that, for p # 2, Pp is a Boolean algebra and,
for p < ©, a complete one in which increasing nets converge point—
wise to their suprema.

Chapter 2: The Cunningham p-algebra CP(X) ( closure of the linear
hull of Ip in [Xx1) and the Stonean space O of Pp (whose clopen
subsets represent Pp) are defined and examined. In particular it is
shown that the Cunningham p-algebra is isomorphic in all structures
to the space of continuous functions on Q. The effect of taking
products and quotients is also investigated.

Chapter 3: In the first part of the chapter we show how a Banach
space X can be embedded in a field of Banach spaces over Q in such
a way that the Lp—projections in X have the effect of characteris-
tic projections. This embedding (p-integral module representation)
turns out to be the most important aid in the investigation of P-
structure.

The second part contains some important consequences which are

needed in the following chapters.
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Chapter 4: With the help of the techniques of chapter 3 we show that
abstract Lp—spaces can be characterized by the maximality of their
1P-structure - a Banach space X is isometric to an Lp-space if and
only if (CP(X))COMM = Cp(X). The most important result used in the
proof is a lemma concerning the existence of projections in
(Cp(X))COMM which generalizes a result of Cohen-Sullivan ([CS1 ) for
smooth reflexive spaces.

We also give an explicit description of the LP-summands in an LP-
space. It turns out that every IP~summand is more or less the
annihilator of a measurable set, a result already obtained in [Suz].
Chapter 5: Ve study the relationship between the p-integral repre-
sentation of a Banach space and the p'-integral representation

of the duwal (1/p + 1/p' = 1), in particular the connection between
the reflexivity of the space itself and that of the component spa-
ces in the representation.

Chapter 6: In an analogous manner to the theory of self-adjoint
operators in Hilbert space we represent the operators in the Cun-
ningham p-algebra as Stieltjes integrals over spectral families of
projections. It is shown that there is a 1-1 correspondence between
the operators in Cp(X) and normalized spectral families. We then
give some important results in the general theory which follow from
this.

Chapter 7: In this chapter we apply the representation of chapter 3
to some simple vector-valued Lp—spaces and draw some parallels to

the general case.



In chapter O we have collected those results from other branches of
mathematics which the reader will need to understand the following
chapters., The appendices contain a sketched proof of theorem 1.3
(for a complete proof see [B2] ), some remarks concerning the
structure of the L™-summands in CK-spaces, and a discussion of a

measure theoretic approach to integral modules.

It is clear that when a group have been working together for several
years it is impossible to say which member is responsible for each
result. Without forgetting this we can say however that the contri-
butions of the individual members of the group are roughly as
follows:— Chapter 1: Behrends ; Chapter 2: Danckwerts, S. Gdbel,
lMeyfarth ; Chapter 3: Evans (section F together with Greim) ;
Chapter 4: Evans ; Chapter 5: Greim ; Chapter 6 : Miller ;

Chapter 7: Evans, Greim.

in conclusion we would like to thank the FNK (Kommission fiir For-
schung und wissenschaftlichen Nachwuchs) of the freie Universitidt

Berlin for assisting us financially in the years 1974-75.
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Chapter O: Preliminaries

Topology

We assume that the reader is familiar with the elementary concepis
of topology.

A nowhere dense set is a set A in a topological space such that the
interior of the closure of A is empty. A set which is the union of
countably many nowhere dense sets is said to be of first category.
In a compact space ("compact" always includes the Hausdorff property)
the empty set is the only open set of first category.

A topological space is said to be extremally disconnected when the
closure of each open set is also open. If the space is also Haus-
dorff this implies that the connected components consist only of
single points or in other words that the space is totally discon-~
nected.

Consider the collection of sets of the form AAB where A is a clopen
set and B is a set of first category. This collection is clearly
closed under finite unions and intersections. If the space is ex~-
tremally disconnected it is also closed under countable unions

since the union of countably many sets of first category is also of
first category and the union of countably many clopen sets is open
and thus, since its closure is clopen differs from a clopen set by

a set of first category. Since the complement of such a set also has
this form it follows that in an extremally disconnected space the
sets of this form form a o-algebra. This o-algebra contains the open

sets since the closure of an open set is clopen and the boundary is



of first category. In a compact space the equality AAB = CAD

(4, C clopen, B,D of first category) implies that A = C and B = D
gsince g is the only clopen set of first category.

A subset A of a topological space is called regularly closed if the
closure of the interior of A is A. Since the interior of A is open
it follows that in an extremally disconnected space the regularly
closed sets are the clopen sets. In an extremally disconnected com-
pact space the closure of an open set is homeomorphic to its Stone-

Cech-compactification ( [Sch], II.7.1).

Borel measures

In a topological space the Borel sets are the members of the o-
algebra generated by the open sets. It follows from the first part
of this chapter that the Borel sets in a compact extremally dis-
connected space can be uniquely represented as the difference of a
clopen set and a set of first category. A Borel measure is a o-
additive set function defined on the Borel sets. The support of a
Borel measure m, denoted by supp m, is the set of all points such
that every neighbourhood of the point contains a set with non-zero
measure. The support is always closed. A Borel measure is said to
be regular (from inside) if the measure of each set is the limit

of the measures of the compact sets contained in it. The support of
a regular Borel measure is regularly closed. The Riesz representa-
tion theorem states that the space of all finite regular Borel mea-

sures on a compact space is the dual of the space of conitinuous



functions on this space (with the sup-norm) under the duality
<, > = ffdu. A regular content is a set function defined on the
compact subsets with the following properties:

(1) 0 < m(D) < e

(ii) € < D implies m(C) < m(D)

(iii) m(Cc U D) < m(C) + m(D)

(iv) m(C U D)

m(C) + m(D) for disjoint C, D

(v) m(D) = inf{m(c)| De ¢° } "

In a compact space every regular content can be extended to an
unique regular Borel measure ([ H2], §§53,54).

If m and m' are two finite Borel measures on a topological space and
every set with zero m-measure has also m'-measure zero the Radon-
Nikodym theorem states that there is an m-integrable function f

such that m' = fm. The theorem can clearly be extended to apply to
measures which are constructed from finite measures with pairwise

disjoint support.

Boolean algebras

A Boolean algebra is a distributive complemented lattice with
maximal and minimal element. With each Boolean algebra U we associ-

ate a compact totally disconnected topological space () in the follo-

.
i

wing manner. We consider the trivial Boolean algebra 2 {0,1} as
a topological space with the discrete topology and define (O as the
set of all homomorphisms of Boolean algebras from ¥ in 2. Thus Q

is a closed subspace of the compact totally disconnected space 2ﬂi

and so also compact and totally disconnected. 0 is called the



Stonean space of the Boolean algebra %. The mapping a = Ba =

{f | feq, f(a) =1} is an isomorphism of Boolean algebras from

% to the Boolean algebra of clopen subsets of Q. (See e. g. [H1]).
A Boolean algebra in which every subset has an infimum and a

supremum is called complete. A Boolean algebra is complete if and

only if its Stonean space is extremally disconnected.

Every Boolean algebra is oxdered in a natural way by the order

as=beasrdb=a., If (‘;’Ji)iEI is a family of Boolean algebras the

cartesian product of the ui's can be made into a Boolean algebra

by defining the lattice operations component~wise. This Boolean

algebra is called the product of the Boolean algebras ﬂi and is

written %, .
i€l



Chapter 1: Lp—projections

X is always a Banach space over the reals, We define certain sub-

spaces of X and investigate some properties which they have. These

subspaces will be considered in much more detail in the following

chapters.

1.1 Definition: Let 1 =p = , J c X a subspace, E : X » X a pro-

jection (that is E linear, B = BE).

(1)

(ii)

J is called Lp—summand, if there is a subspace J* such that
algebraically X = J & J* , and for x € J, x* € J* we always
nave llx+x*I? = IxI? + Ix*I® (if p == 2 [x+x']] =

= max {llx[l, Ix*I}).

E is called Lp—projection, if for every x € X

%P = [|Ex|P + [x-Ex|® (if p = : |Ix|| = max {l|Exll, [x-Ex|})

1.2 Proposition:

(1)

(i1)

(iii)

(iv)

(v)

For any LP-summand J the subspace J' in definition 1.1(i) is
uniguely determined. We therefore call J* "the IP-summand com-
plementary to J" and write X = J GPJ*.

Let J be an LP-summand and E be the projection onto J with
respect to X = J @p J*. Then E is an Lp—projection.

For any Lp—projection E the spaces range E and ker E are com—
plementary 1P-summands, that is X = range E Op ker E,

Every LP-projection E is continuous with |E[ = 1.

In particular, IP-summands J are closed (since J = ker El,
where E' is the LP-projection onto J*).

There is a one-to-one correspondence between the set of



IP-summands and the set of Lp—projections.

Proof':

(i) Let J be an ILP-summand, such that J# and Jg satisfy the condi-

tions of definition 1.1(i). We will prove J# = J; .

Let y € J# . We have y = x + x* where x € d, x* € Jg . For p < =

it follows that lyllP = lIx/® + |Ix*I|’. on the other hand, |x*||P =

= I[P + lyll® (vecause x* = =x +y, x € J, y € J;), hence x = 0

and y = xt € J; .

If p = » , consider y + ax (= (a+1)x + x*) for a> 0. Condition
1.1(1) implies max {l[(a+1)xll, lx*ll} = ly+axll = max {llaxll, lyll},
80 necessarily x = 0.

We have thus proved that J* c JE . The reverse inclusion follows

by symmetry.

(ii), (iii), (iv), (v) are easily verified. [

Examples:

1)

2)

Let 1 £ p £ © and (S, 7, 1) a measure space. In X = I°(S, %, u),
every measurable subset B c¢ S5 defines an Lp—projection by

fr» fxg . The measurability of B is not essential. It is suffi-
cient that for f € X always f x5 € X (that means B N D € ¥ for
DEY, u (D) < » ), We investigate the structure of the LP-
projections on X in more detail in chapter 4.

Every closed subspace J of a Hilbert space is an L2—summand.

J' is the usual space orthogonal to J, and the norm condition is

the Pythagorean law for orthogonal elements.



3) Let T be a topological space and S < T a clopen subset. The
annihilator of S, {f | £ : T »TR continuous and bounded, f|g= 0}
is an L -summand in the space of all real-valued continuous and.
bounded functions on T. We will show in appendix 2 that for com-
pact T all L”-summands have this form.

4) The operators Id and O are always Lp—projections. We say that

the LP-structure of X is trivial if there are no other Lp—pro—

jections (or equivalently: there are no other ILP-summands than
X and {0}).

5) If X and Y are Banach spaces, 1 £ p = «© , define the norm on
Xx Y by NGl = (Ixl® + yl®)/® (if p == : I(x,)ll =
max {llxll, lyl}). As subspaces of X x Y, X and ¥ are complemen-
tary 1P -summands, and up to isometric isomorphism ILP-summands

always have this form.

We now state a theorem concerning Lp-projections which is fundamen-
tal to the following investigations. Motivated by results of (¢] ana
[AE] (L1— and I -projections there are called L- and M-projections,
respectively) it would seem reasonable to attempt to prove a commu-—
tativity theorem for Lp—projections which seemed to be essential for
nearly all results. A thorough study of certain classes of Banach
spaces (CK-spaces, AK-spaces, 1P -spaces; cf. [B11 and [Su 2]) showed
that in these classes Lp—projections always commute if p £ 2, and

every Banach space admits nontrivial Lp—projections for at most one

p in [1,*]. Of course, L2—projections will not commute in general,



