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Foreword

In the unlikely event that you have opened this book without knowing anything
about microgels, we start with a definition. Microgels are solvent swollen polymer
networks (i.e. a type of gel) present as discrete particles with average diameters in the
range 20 nm to 50 um. Although Baker’s first explicit description of microgels in
1949, describes solvent swellable polybutadiene particles, most of the microgel
literature concentrates on aqueous microgels (hydrogels) in the size range 100 to
1000 nm. Generalizing more, most of the aqueous microgel publications involve
crosslinked poly(N-isopropylacrylamide), PNIPAM, or related polymers showing
lower critical solution temperature (LCST) behaviors. Microgel technologies have
their roots in latex emulsion polymerization, which is one of the most important
historical advances in polymer technology. I mention emulsion polymerization
because of the parallels between latex and microgel technologies. Both involve
colloidally stable, nano-scale particles with very high specific surface areas and
low viscosities. Instrumentation, techniques, and colloidal theories perfected with
the advent of monodisperse latexes in the 1960-1980 period are now used to
characterize microgels. The ability to apply microelectrophoresis, light scattering,
particulate rheology, high performance titrations and small angle neutron scattering
to microgel characterization gives researchers a much larger characterization tool-
box compared to those working with macrogels.

Microgel research dramatically expanded with the advent of PNIPAM microgels.
We made the first PNIPAM microgel in 1978 and we were allowed to publish the
work 1986, followed by the first description of a polystyrene-core-PNIPAM shell latex
or microgel in 1988 — the definitions blur when considering solid core-gel shell
particles. In my opinion, the large number of subsequent microgel publications
arises for two reasons. First, microgels based on LCST polymers are extremely easy
to make, modify and purify - one does not have to be a highly skilled synthetic
polymer chemist to prepare microgels. Second, easy to measure properties includ-
ing electrophoretic mobility and hydrodynamic particle size from dynamic light
scattering, are sensitive functions of temperature, pH, and the presence of surfac-
tants, proteins and other solutes.

The ease of PNIPAM microgel synthesis is a direct consequence of the LCST
behavior of PNIPAM. Indeed, I believe that this link to microgel synthesis is the
most important consequence of the temperature sensitivity of PNIPAM and related

XIX
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polymers — there are few applications that actually exploit the temperature sensitiv-
ity. The importance of the LCST, or more correctly cloud behavior, in microgel
preparation is illustrated by comparing the synthesis of PNIPAM microgels to
polyacrylamide microgels. When polymerizing N-isopropylacrylamide in water
above the cloud point, the growing polymer chains phase separate (coil-to-globule
transition) leading to homogeneous nucleation of dispersed, microgel particles. The
PNIPAM particle formation mechanism is analogous to the surfactant-free poly-
merization of styrene. By contrast, there are very few publications involving cross-
linked polyacrylamide microgels because they are difficult to make, and nearly
impossible to make as uniform particles. Polyacrylamide is water soluble and
does not spontaneously yield microgels. Instead, polyacrylamide microgels must
be prepared by a more complex procedure, such as pre-emulsification of aqueous
monomer in oil followed by polymerization.

In 2000 I published a review summarizing microgel science and technology — this
would be a daunting task now because of the volume of work in the last decade. The
ranges of activities summarized in the following chapters highlight the breadth and
complexity of the microgel landscape. I finish this essay with my biased view of the
main trends in microgel research, and as well, some unanswered questions that
have nagged me over they years.

Trend 1 — Applications: In line with the general trends in modern chemistry/
material science, microgel publications include a strong emphasis on potential
applications. In many cases the potential applications appear to be added as an
afterthought, presumably to justify the work; in a few cases the application is the
main emphasis and microgels are a means to an end. From my earliest days working
with microgels, I have believed there must exist some good applications for micro-
gels. In view of the volume of microgel literature with links to potential applications,
many others must feel the same. Some early outstanding examples are Pichot’s body
of work using microgels as platforms for bioassays, and Asher’s concept of respon-
sive microgel-based colloidal arrays. Many clever and more recent examples are
found in the following chapters. Nevertheless, one can argue that a “killer applica-
tion” has yet to surface. To the best of my knowledge, aqueous synthetic microgels
are not manufactured in large scale and they do not appear in consumer products. Of
course there are food hydrocolloids, nano-particulate starch and other examples of
commodities that could be considered as microgels — definitions are always con-
troversial.

Trend 2 - Biodegradable Microgels: I suspect that the largest number of proposed
microgel applications is biomedical, and most of those involve controlled drug
release. For implanted microgels, biodegradability is an issue. In vivo decomposition
requires that PNIPAM and other vinyl polymers must be replaced by polyesters,
polyamides and other degradable backbones. In many cases biodegradability comes
with the cost of losing the exquisite control of composition and particle size
achievable with vinyl polymerization.

Trend 3 — Complex Functionalization: The original PNIPAM microgels offered
little more than temperature sensitive swelling and a few sulfate or amidine groups.
One can find microgel examples of all the popular forms of conjugation from
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biotinylation to click chemistry. Because microgels can be dialyzed, filtered, and
centrifuged, purification and multi-step reactions are easier with microgels than
with the corresponding soluble polymers. In most cases, the starting point for
functionalization is the inclusion of carboxyls or amine groups in the parent
microgels. With PNIPAM and related microgels, the topochemical distribution of
these attachment points within the microgel particles is controlled by the polymer-
ization kinetics.

Trend 4 — Organic/inorganic Composite Microgels: Magnetic microgels, quan-
tum dot-loaded gels, and virtually any other nanoparticle-load microgel one can
imagine has been reported. The synthesis either involves growing nanoparticles
within the microgels or loading gels with existing particles. These systems should
greatly expand the application space for microgels. Hellweg in Chapter 2 describes
examples of composite microgels.

Trend 5 — Assembled Microgels: In my view, one of the most promising areas for
microgels involves the assembly of microgels in much larger and complex struc-
tures. The early papers by Sandy Asher, Zhibing Hu and Andrew Lyon focused on
exploiting the environmentally sensitive photonic properties of microgel based
colloidal crystals. Microgels are readily printed by ink jet and other water-based
printing technologies, facilitating roll-to-roll manufacturing of patterned surfaces.
Surely the “killer application” is coming.

Microgel science is mature. With a thirty plus year history and the accumulated
knowledge in hundreds of publications, it is possible to synthesize and characterize
almost any microgel structure one could imagine. Nevertheless, there are some
gaps. With the exception of neutron scattering, there are few (no?) tools to measure
the mass and functional group distribution within microgel particles. Compared to
our structural knowledge of proteins such as enzymes or other synthetic systems
such as self-assembled monolayers, we know little about the detailed organization of
microgels. Controlled radical polymerizations should give better control of microgel
structure, facilitating characterization — see Matyjaszewski, Chapter 9.

The polymer reaction engineering aspects of microgels have received little atten-
tion. Hoare’s work is the only significant kinetic modeling and there have been few
measurements of microgel polymerization kinetics. Such work will be required to
transform impractical academic microgel recipes (dilute solution, long reaction
times, and purification by ultracentrifugation) into a commercial process when
large scale applications emerge.

In closing, microgels are an established subset of the materials toolbox. The
chapters herein describe fascinating phenomena that point to a multitude of
potential applications. In my view, microgel science will not evolve as a separate
field but will continue to occupy an important position in the hierarchy of nano-
colloidal dispersed systems.

Robert Pelton
McMaster University



Preface

The idea of polymers, or more colloquially “plastics”, was initially met with scrutiny
at the time of the initial experiments of Staudinger and Carothers. Despite this
scrutiny, their ideas were eventually accepted, and these days one would be hard
pressed to live one day (possibly one minute) without having contact with polymer-
based materials. Whereas countless varieties of polymers, and polymer-based mate-
rials exist, this book focuses solely on colloidally stable hydrogel particles. Hydrogel
particles, often referred to as microgels or nanogels depending on the length scale of
their smallest dimension, are composed of a cross-linked hydrophilic polymer
network. Because of the hydrophilicity of the polymer, and the cross-linked nature
of the structure, the particles swell with water, typically taking on a spherical shape.
Hydrogel particles have found their way into numerous applications ranging from
lubricants in machinery to targeted/controlled drug delivery. Looking forward, there
are still many potential applications that could benefit tremendously from new,
enabling microgel-based materials. With the prospect of revolutionizing specific
technologies, comes basic research; this book is meant to highlight the most exciting
and impactful current research in the fields of microgels and nanogels. The volume
was assembled to highlight the newest synthetic routes, characterization methods,
and applications emergent in the area. Leaders in the field have contributed chapters
representative of their most recent results from their respective labs, thereby shed-
ding light on the enormous potential of this unique class of matter.

In editing this book the authors owe a great deal of thanks to our respective group
members for volunteering their time to aid with the review process of the submitted
chapters. We also owe a great deal of gratitude to Anja Tschortner and Martin Preuss
of Wiley for allowing us the opportunity to edit this volume, and for their assistance
along the way.

L. Andrew Lyon
Michael ] Serpe
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