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Preface

The subject matter of this book is the description of the behavior of porous
materials in the presence of fluids. Porous materials are many, for example, soil
or a sandstone, designed material such as a Nuclepore filter or MCM-41, wood
fiber, or the cellular solid in the keel of an ice plant. Fluids often occupy the pore
spaces in these materials and can alter the geometry/mechanical properties of the
porous materials. It is this fluid—solid coupling that is discussed in the chapters
herein.

We identify two important components of the fluid—solid interaction at the
interface of solid and pore space. One relates to the phase change of fluid and the
other relates to change of the mechanical state of solid. These changes depend on
the thermodynamic state defined by (P, 5, T), that is, the fluid is at pressure P, the
solid is at stress o, and both are at temperature 7. The pressure P is the pressure
of the fluid that is far from the pore walls. At low fluid pressure, the pore space is
filled with unsaturated vapor (Figure 1a). As the fluid pressure increases (moving
up the dotted line in Figure 1a), the fluid on approaching the pore walls is inho-
mogeneous, evolving from gas to gas—liquid coexistence and eventually to liquid,
because of forces exerted by the solid on the fluid. On further increase in the fluid
pressure, the liquid near the pore wall solidifies. This evolution is depicted in the
one-dimensional pore space of Figure 2. The x-axis indicates a physical pore space
discretized for illustrative purposes in layers. The fluid pressure increases from
Figure 2a—d, and the fluid near the pore wall undergoes phase changes. At fluid
pressure equal to the saturated vapor pressure, Figure 2d, the fluid far from the
pore wall is bulk liquid and the fluid close to the wall, which has not become solid,
is at an effective pressure greater than the saturated vapor pressure. The fluid at
the pore wall has become solid at an effective pressure, which is much greater than
the saturated vapor pressure. While this evolution of the fluid in response to the
fluid pressure is taking place, the solid, at stress o, is almost unchanged.

The second component of the fluid—solid interaction is the development of
a mechanical force system in the solid. At the pore wall, the solid pulls on the
fluid, causing the inhomogeneous fluid arrangements in Figure 2a—d. In reaction,
the fluid pulls on the solid causing a stain field in the solid. This is illustrated in
Figure 3, a pore space in one dimension (for simplicity) bounded by solid on either
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Figure 1 (a, b) Phase diagrams of the material in a porous media system. The fluid is
in principle at (P, T) and the solid, able to be addressed independently of the fluid, is in

principle at (o, 7).
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Figure 2 Fluid configuration in a pore increasing; (c) pressure is approaching the
space near a wall as pressure increases saturated vapor pressure; and (d) pressure is
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Figure 3 Fluid configuration in a pore wall system. The phase changes within the fluid and
the strain induced in the pore wall are illustrated. The fluid pressure increases from (a) very
low to (c) the saturated vapor pressure.

side. As pressure approaches P, phase changes occur that are shown in Figure 2.
The solid phase of the fluid appears on the pore wall due to densification as a result
of forces exerted by the pore wall system. Concomitantly, the fluid pulls the pore
walls into the pore space. A strain develops in the solid. This strain, often assumed
to be small and able to be neglected, is driven by the fluid and can be a complex
function of the history of the fluid configurations.

The solid could be under no stresses except that caused by forces from the fluid.
However, it is, in principle, possible to have a stress field in the solid that is set
independent of the forces from the fluid. This possibility, illustrated in Figure 1b,
is the domain of Biot theory. For the most part, this subject area is not developed
in this book. An exception is the paper by Vandamme et al. in Chapter 5.

The interaction of fluid and solid in porous materials at local scale manifests
itself as complex nonlinear phenomena at global scale. One interesting nonlinear
phenomenon that this book draws attention to is hysteresis. Hysteresis can be in
the response to mechanical probes such as the stress—strain curve of a dry Berea
sandstone, discussed in Chapter 1. The mechanical state of a typical sandstone
evolves slowly over time following finite frequency excitation. Chapter 1 presents
the mechanical experiments that interrogate the internal strain of the grains using
a neutron beam and reveals important features of the behavior of rocks, that is,
consolidated granular media.

There are also many systems in which the coupling between fluid and solid
brings about the complex behavior, and some hysteresis can arise only as a result
of the coupling. Chapter 2 is an experimental and theoretical study of mesoporous
silicon material and presents a thermodynamic model at the fluid - solid interface.
It reports adsorption-induced strain in the solids and the reciprocal stress effect
on the adsorption process. Chapter 3 develops a theory to describe the fluid - solid
coupling at the local scale. The manifestation of this interaction is described and
investigated using a finite element model. The inhomogeneous system composed
of fluid and solid elements can accommodate a variety of circumstances such as
bulk fluid in the pore space of a rock, fluid in the wall fabric of wood or a cellular
solid, and fluid in the polymeric filling of a cellular solid framework. Chapter 4
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continues to present a theoretical study that formulates a model for stress—strain
behavior of dry quasi-brittle materials allowing damage to be created. The Preisach
model is used to model the damages at microscale, and this is translated as den-
sity to the macroscopic elastic elements to interpret the macroscopic behavior in
terms of evolving populating of microscopic elements. The dry quasi-brittle mate-
rial model is then modified to include moisture by allowing fluid—solid coupling
in the form of an effective internal stress. Chapter 5 focuses on coal that serves as
a valuable model of saturated porous material. The particularly interesting feature
of coal is the range of length scales of the pores from macroscopic to mesoscopic,
cleats, and matrix pores. This is modeled combining thermodynamic description
of two pore systems, the macroscopic cleat system and the mesoscopic matrix
system, which are coupled by a Darcy flow that is driven by a pressure gradient.
Chapter 6 brings an alternative perspective on mechanics of porous materials by
developing a multifield model and applying it to a series of foams. The particu-
lar interest here is the behavior of coupled fluid—solid systems under dynamic
loading.

Chapter 7 examines the fluid—solid coupling in the context of wood swelling.
The experimental observations are obtained by the modern X-ray tomography
technique at a micrometer scale, and strains at multiple scales of hierarchical wood
tissues are studied as a function of moisture content. This is accompanied by a
parallel modeling study that explores the role of materials” structure as moisture
content changes. The final chapter, Chapter 8, also investigates biological cellular
materials, that is, plants. The authors employ this coupling in numerous ways from
the analog of “blowing up a balloon” to a “mechanical” thermostat. Systems that
exhibit this wide range of behaviors are described, for example, systems based on
inner cell pressure, systems based on water uptake into the cell wall, systems based
on a differential swelling of cell wall layers, and systems that illustrate the capacity
of water as a plant movement actuator.
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