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FOREWORD

IT IS a privilege indeed to welcome a book by Professor Plemelj on a
subject in the development of which he played an historic role. « Pro-
fessor Plemelj’s place in the history of mathematics is, of course, secure,
but we note with particular pleasure that at his advanced age he is
again enriching the mathematical literature. .

The chapters of this book converge to the solution of two central
classical problems which were, and still are, the source of numerous
mathematical results of considerable importance in theoretical and
physical applications. Klein proposed and stimulated interest in one
phase of the first problem which is concerned with the mapping prop-
erties of the ratio of two linearly independent solutions of a Fuchsian
differential equation. Riemann originated the second problem which
has to do with the determination of » functions, each analytic in a
domain D, and such that the limit value of each function at the interior
side of the closed boundary C is equal to a linear combination of the n
exterior limit values of functions required to be analytic in the exterior
of C. The solution of this problem leads to the explicit solution
of certain fundamental integral equations with Cauchy kernels; and
it subsumes, among other things, the solution of equations of
Wiener-Hopf type.

Professor Plemelj has long ‘been interested in these fascinating
problems of Klein and Riemann; and some of his own original contri-
outions are contained in the tekt. His account of methods for solving
the problems is of more than historical value. He shows that the
problems are still attractive by discussing recent work and pointing to
phases of the problems which remain to be solved.

In Part I of the text Professor Plemelj develops the theory of ordinary
linear differential equations with analytic coefficients. After a
presentation of the general theorems about these equations, there is a

detailed analysis of the hypergeometric equation; the second order
A 4



vi Foreword

Fuchsian differential equation; and the singular points of these
equations. This is followed by a discussion of Euler’s method for
finding definite integral representations for the solutions of differential
equations and it is shown how this kind of representation gives the
global behaviour of the solutions. The theory in this part is directed
toward Chapters 7 and 8 which include the solution of some of Klein’s
problems and a presentation of some of Klein’s theorems about
mapping with the ratio of two independent solutions of a Fuchsian
equation. There is a discussion of some of Plemelj’s own work and its
relation to some recent advances. Plemelj shows that Klein’s problem
is still alive and his concluding remarks in Chapter 10 suggest certain
interesting but unanswered questions.

Part II begins with a review of Fredholm’s integral equation and the
method Fredholm used-to solve it. The usual Fredholm theorems are
proved and enunciated. The results are then applied to Dirichlet’s
problem for the potential equation. Chapter 14 is devoted to an
explanation of the behaviour of the limit values of analytic functions
expressed as Cauchy integrals. The formulae which are given are very
useful for finding the solution of certain singular integral equations;
and they are now known as Plemelj’s formulae. The goal of the
development in this part is the solution of Riemann’s probiem. This
is given in considerable detail in Chapter 15. The theory of this
chapter is of current interest and is being pushed forward because it is
intimately connected with the theory of integral equations and other

. function theoretic problems.

The reader of this book will find no exercises, and there are only a
few subsidiary problems discussed in the text. Problems which are
suggested by the reader’s own imagination and interest are tacitly left
for him to solve. This is so because Professor Plemelj’s purpose is to

* present the more or less mature student with an opportunity to pursue a
train of thought which runs, with a minimum of side excursions, to a
comprehension of the famous problems of Klein and Riemann.

September 1962 A. S. PETERS
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PART 1

LINEAR DIFFERENTIAL
EQUATIONS

Linear differential equations represent a very important type of
differential equations, not only because many purely mathematical
problems, but also, because by far the majority of all questions of
practical applications lead to such differential equations. In function
theory, physics and astronomy, we find a large number of examples of
linear differential equations of the ordinary as well as of the partial
type. Problems arising in the theory of small vibrations are formulated
mathematically by use of linear differential equations. It is also this
type of differential equations to which the mathematicians of the last
century have devoted their greatest efforts and on which they have
largely expanded the function theoretical tools, so that one might very
well claim that today, mathematics controls this kind of differential
equations to quite a large extent. Originally, the problem of the
solution of a differential equation was conceived to be its reduction to
integrals where the upper limit was expressed in terms of the independent
variable, i.e. to so-called quadratures. However, it then turned out
that a solution in this form was rarely possible, and hence that the
term ‘integration of a differential equation’ was unsuitable. It became
necessary to reformulate the problem in the form: the solution has to be
examined by use of the differential equation itself and one has to
deduce from the differential equation directly the course and the
properties of its solution. This formulation is more general than the
original one: it has to be recognized on the basis of the differential
" equation itsélf what the properties of its solution are. This is especially
important in function theory. In the most frequent case when the

coefficients are analytic and we have a solution, for example, in the form
1 1



2 Part I—Linear Differential Equations

of a power series, we have to deduce trom the differential equation the
behaviour of the solution in the entire region where it exists, i.e. for
every analytic continuation of the independent variable. This problem
has been solved for ordinary linear differential equations. This type
of linear differential equations will be treated first.



CHAPTER 1
Ordinary Differential Equations

§1. The linear, nth order differential equation in the independent
variable x and the dependent variable y has the form
dny du -1 y dﬂ - 2y

dy
prpec + a IF-1 + a’dx"" +-.--+ a,._la% +a,y=05, (l.I)

where the coefficients a,, 4, . . ., @, of the differential equation as well
as b depend on x and will be assumed to be known.

For b = 0, the differential equation is called homogeneous, otherwise
non-homogeneous. . The differential equation can be reduced to a
system of differential equations of the form

ar,
dx

ar,
dx

=auY, +a,Ys +- -+ a1.Y, + by,

=anl; + aszrn v+ agn ¥y + b,
(1.2)

a7,

dx = an;Yl + a«,ng e o annY” + bn,

where y and the derivatives dy/dx, d2y/dx3, ..., dy"~!/dx*~! have been
introduced as néw dépendent variables Y,, Ys,..., Y,. Conversely,
the system of linear differential equations can be reduced to a single
linear differential equation.
Following Liouville, the solution of the system of linear differential
equations (1.2) is readily found by reducing it after multiplication of
3



4 o Part I—Linear Differential Equations )

each equation of (1.2) by dx and subsequent integration to a system
of linear integral equations '

Y.(x) = Yy(x0) + j (a1 Yo(6) + o Ya(®) + -+ + @ Yo(®) + bs] d&,

Yo(x) = Ya(xo) + f: (42, Y1(€) + aaa Ya(€) +- - + 3. Yo(€) + bal dE,

Yu(x) = Yu(xo) + J- " [0 Ya(®) + 0, Yal®) + -+ + @ Yo(®) + by) 0&.
(1.3)

Substituting successively for Y;, Y,, ..., Y, under the integral signs on
the right-hand sides of these equations, one obtains for the Y,(x) series
a series the convergence of which is easily compared with the conver-
gence of a series of the form

. K3s? K3s®
gt+egkstgg5+8753+

where g and K are positive numbers, while s represents the length of the
path of integration. This solution exists for arbitrary initial values
Yi(x0), Ya(x0), .., Yu(xo) for every x, for which all the coefficients
a,, and b, remain finite. Thus, one can already deduce from the
coefficients the values of x, for which the solution could be in doubt.
If the coefficients are analytic, the solutions will also be analytic and
the successive integrations lead only to analytic functions. For non-
analytic functions, it is necessary to specify the path of integration, i.e.
it is not immaterial by which path one travels from the starting point x,
to the end point x.

It is important by which course we pursue the continuous history of x
from the initial point x, to the point x, The existence of a unique
solution is ensured only if the path lies throughout in the domain of
regularity of the coefficients a,, and b,. All the integrals must be
evaluated along the same path. Where then can we have singularities



Ordinary Differential Equations 5

of the solution? Only where the coeflicients ay, and b, are singular,
However, even the singular behaviour of the coefficients is not always
a hurdle to the regular behaviour of the solution; nevertheless, wherever
the coefficients a,,(x) and b,(x) are regular, the solutions are certainly
also regular.

So far we have spoken about the solutions of the system of differential
equations each of which is of the first order. It is not difficult to extend
the existence theorem to an nth order linear differential equation. In
that case, the existence theorem states that we can prescribe for the
solution y of an nth order linear differential equation at the initial
point x, the values y(x,), ¥'(xo), - . ., ¥~ (x,) in a completely arbitrary
manner. One, and only one, solution y(x) will exist which is regular
along a given path from x, to x, if only the entire path lies in a region
where all coefficients are regular.

§2. We will now restrict our considerations to a homogeneous nth
order linear differential equation. We will soon see that this restriction
is admissible, because we can always reduce the solution of the non-
homogeneous linear differential equation to a solution of the homo-
geneous equation and several quadratures.

First of all, we show that the general solution of a homogeneous
linear differential equation can be constructed as soon as suitable
particular solutions are known. We note the following. Ify,,ys,..., ¥
are solutions, then also every expression of the form c¢,y: + cayq
4.+ + ¢, )i is again a solution, where ¢,, ¢, ..., ¢, are arbitrary
constants.

One says that this solution can be represented linearly in terms of the
solutions yy, ¥a, ..., V- In this context, the concept of the linear
dependence of functions yy,ys,...,». suggests itself. Functions
Y1, Ya, - - -» Vi are said to be linearly dependent on each other, if there is
a system of k constants c;, ¢s, . . ., ¢k, Dot all of which are identically
equal to zero, such that the equation ¢;y, + caya +- -+ ¥k =0
holds for arbitrary x in the domain where the functions y,, ¥g, -« -5 ¥«
are defined. If there is no such system of constants, then the functions
V15 Vas - - «» Vi are said to be linearly independent of each other.

Now we form n solutions y,, ya, ..., y» of the linear differential
equation which are linearly independent of each other by prescribing



6 Part I—Linear Differential Equations

theil‘ Valnes yk(xo)! }’l'c(xo), Y;(xo)\, AL y(z-l)(xo): k= l, 2’ el at the
point x = x, in the following manner:

»(=): 1,0,0,...,0,
ya(*): 0,1,0,...,0,
yo(x): 0,0,1,...,0, (1.9

yﬂ(x): 050,0,-.-, 1.

The existence theorem tells us that this is possible. Every other
solution can be represented linearly in terms of these solutions. In
fact, if we select for any solution y(x) as initial values of y(x,), ¥'(xo),
¥ (%), . . ., Y*"V(x,), the constants ¢;, ¢y, . . ., Cy, then there exists a
single such solution which is given by

Mx) = e1y1(%) + caya(x) + capa(x) + - - + caya(x)-

On the basis of (1.4), it is immediately seen that y(xo) = c;, and that the
successive derivatives have the values y'(xp) = ¢3, y"(x0) = €3, .- -
y*-(x,) = ¢, The functions y;(x), ya(x), ..., ya(x) constructed
above are linearly independent. In fact, if we assume that there is
between them a relation ’

ko (%) + kaya(x) + - -+ Ky yu(x) = 0

with constant coefficients k,, kg, . . ., k, which is valid for every x, then
we could differentiate successively this equation with respect to x and
would find for x = x, consecutively k; = 0, k; =0,..., k., = 0, ie.
that the functions y;(x), y2(x), .. ., ya(x) are linearly independent.

§3. We will now pose a general question regarding a process by
which one can recognize whether m given functions y,(x), y(x),...,
¥m(%) are linearly dependent on each other. In that case it should be
possible to find m constants ¢;, ¢z, . . ., ¢, Dot all of which are zero such
that for arbitrary x one has the equations

en1(®) + cayal®) +-- -+ cuul®) = 0,

c1yi(x) + €292(%) ++ -+ caYulx) = 0, s

A E) + eI+ o) = 0.
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Al these equations are obtained from the first equation by successive
differentiations.

These m homogeneous equations which are linearin the ¢y, ¢, . . ., ¢
series should have a non-trivial solution, ie. they should yield a
system of constants c,, cg, ..., ¢, not all of which are zero. In order
that this will be possible, it is only necessary that the determinant

»n(x) ya(x) cor Ya(x)

W) = ) o rx) <o Yn(®) 16

W) WP®) .. IR TP)

is identically equal to zero for every value of x. This determinant is
called the Wronskian of the functions yy, s, ..., ym. We have, of
course, assumed here that all of the functions y,(x), ys(x), ..., yu(*)
have m — 1 successive derivatives. In the case where the functions
Y1(%), ya(x),..., ym(x) are linearly dependent,  the corresponding
Wronskian W(x) must vanish identically.

We can also prove the converse result, namely that the vanishing of
the determinant W(x) implies the linear dependence of the functions
Y1(%)s ya(%), . . ., Yu(x). In order to prove this statement, we assume
that W(x) = 0. If we study the minor determinants ,of the last
horizontal row, we see that they are also Wronskians, namely those
formed from m — 1 of the functions y;(x), ya(x), ..., yu(x). We may
assume that none of these minor determinants are identically equal to
zero, since otherwise, by induction, m — 1 of the functions y,(x),
Yo%), . . ., ym(x) would already be linearly dependent.

The system (1.5) of equations for the coefficients ¢y, ¢5,...,cnhasa -
determinant which vanishes identically; therefore it has a non-trivial
solution, although it must be expected that the coefficients ¢y, €3, ..., €m
will be functions of x. None of the ¢, cy,. .., ¢, can now vanish
identically, since otherwise the system with fewer than m of the
coefficients ¢, ¢y, ..., ¢y Would already have a non-trivial solution.
In view of the fact that none of the ¢, vanish, we can set, for exa‘mple,‘ :
¢n = 1. Next we differentiate successively all of the equations (1.5)
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except the last with respect to x. Taking the succeeding equation into
account, we obtain the equations

en(x) +caya(x) + -+ cpoy1Ym-2(¥) =0,
1 yi(x) + c2ya(x) + -+ + o1 Vn-1(x) =0,
(X)) + 2y P(x) +- - + e YasP(x) = 0.
If now, by assumption, the Wronskian of the functions y,(x), ya(x), . . .,
Ym-1(x) does not vanish, we find that ¢; = ¢ =---= ¢p1 = 0, i.e.
that all the ¢,, ¢,, ..., cn—4 SEries are constant once we assume that c,,
is constant. Hence we have proved that the functions y,(x), ya(x), . ..
Ym(x) are linearly dependent, if their Wronskian vanishes.

The value of the Wronskian can be expressed in terms of the
coefficient a,, of the homogeneous linear differential equation

YR+ @yt @yt ety + ey =0 (17)
which is satisfied by the functions y,, ya,..., ¥n. Infact, we have
W = efu@dr, (1.8)

This result is readily established if we form dW/dx and substitute in
the differentiated Wronskian for y{™ the value —a,y{* ~? —ayyir~2 —
-++— apyx. In this way one finds

dw

a- = — w.
The expression (1.8) for W follows from this equation, where the
constant of integration, of course, does not vanish, since W(x) % 0.

§4. We can now show that every solution y of a homogeneous

linear nth order differential equation can be expressed in the form

Yx) = e y1(%) + c2ya(x) + -+ + Ca¥m(X), (1.9)

where ¢,, ¢, . . ., ¢, are constant coefficients, if y,(x), ya(x), . . ., Ym(X)
form a system of linearly independent functions. Since the Wronskian
of the functions y;(x), ya(x), . . ., ¥n(¥) does not vanish identically, we
prescribe for y(x) the initial values y(xo), ¥'(Xo), ¥"(Xo), - - -» Y™~ V(o) in
(1.9) and substitute in this equation which we differentiate with respect
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to x successively m — 1 times for x the value x,. In this way, we obtain
for ¢y, ¢, . . ., Cn & soluble system of equations and the unique solution
of the linear differential equation. Every such system y(x), ya(x), .. .,
Yn(x) of solutions which can fulfil the above task is called a fimdamental
system of solutions. If we have an mth order differential equation of
any type, its general solution depends on x and m constants, which are
independent of each other. Then, if we have a solution which results
from a special choice of the constants, the knowledge of such a particular
solution does not, as a rule, assist with regard to the establishment of
the general solution. In the case of linear differential equations this is
not true. As we have seen, we can in this case represent every solution
as soon as we have » suitableé particular solutions, i.e. a fundamental
system.

It is even readily seen that the knowledge of one single particular
solution brings us closer to the complete solution in the sense that we
can reduce the mth order differential equation to a linear differential
equation of order m — 1. In order to show this we set in the
differential equation y = nu, where 5 is a particular solution of the
differential equation (1.7). Now we form the successive derivatives

Y=un+u,y =un+ iy +u’,...,
P = gymy g (’1”) umTUp g (m"—l 1) Un™=D 4 gy,

which we substitute into the differential equation. First of all, we
note that these derivatives are linearly homogeneous in w, «’, u”, . . .,
'™, Therefore, the differential equation assumes the form

Aotf™ + Au™ D oo+ Ay U+ Aqu =0

in which, however, A, = 0. This fact is readily verified directly, but
also in the following manner: we have substituted for y the expression
¥ = um, where 5 was a particular solution of the linear differential
equation. Every solution can be represented in this form, in particular
those which have the form y = 5-const. Therefore the equation has as
a solution the function u = const., which can be the case in a linear
differential equation only if the term with u is absent. If one writes



