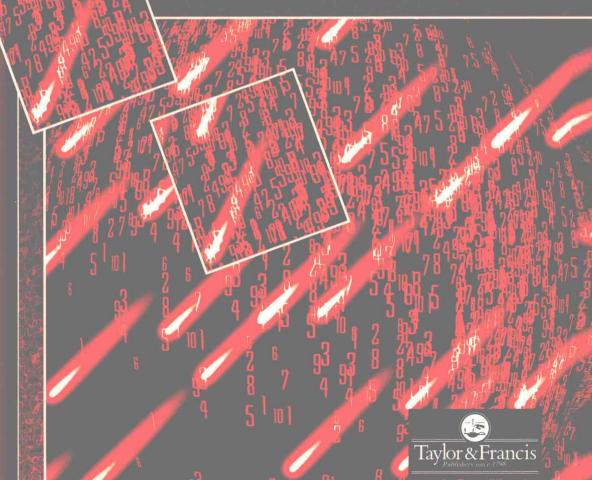


INTRODUCTORY MATHEMATICS FOR THE LIFE SCIENCES David Phoenix



Introductory Mathematics for the Life Sciences

David Phoenix

Department of Applied Biology University of Central Lancashire Preston, UK

UK Taylor & Francis Ltd., 1 Gunpowder Square, London EC4A 3DE. USA Taylor & Francis Inc., 1900 Frost Road, Suite 101, Bristol, PA 19007.

Copyright © David Phoenix 1997

All rights reserved. No part of this publication may be reproduced stored in a retrieval system, or transmitted, in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library ISBN 0-7484-0428-7

Library of Congress Cataloging Publication Data are available

Cover design by Jim Wilkie

Typeset in Melior by Keyword Publishing Services Ltd

Printed in Great Britain by T.J. International, Padstow, UK

Introductory Mathematics for the Life Sciences

General Preface to the Series

The curriculum for higher education now presents most degree programmes as a collection of discrete packages or modules. The modules stand alone but, as a set, comprise a general programme of study. Usually around half of the modules taken by the undergraduate are compulsory and count as a core curriculum for the final degree. The arrangement has the advantage of flexibility. The range of options over and above the core curriculum allows the student to choose the best programme for his or her future.

Usually, the subject of the core curriculum, for example biochemistry, has a general textbook that covers the material at length. Smaller specialist volumes deal in depth with particular topics, for example photosynthesis or muscle contraction. The optional subjects in a modular system, however, are too many for the student to buy the general textbook for each and the small in-depth titles generally do not cover sufficient material. The new series Modules in Life Sciences provides a selection of texts which can be used at the undergraduate level for subjects optional to the main programme of study. Each volume aims to cover the material at a depth suitable to the year of undergraduate study with an amount appropriate to a module, usually around one-quarter of the undergraduate year. The life sciences was chosen as the general subject area since it is here, more than most, that individual topics proliferate. For example, a student of biochemistry may take optional modules in physiology, microbiology, medical pathology and even mathematics.

Suggestions for new modules and comments on the present volume will always be welcomed and should be addressed to the series editor.

> John Wrigglesworth, Series Editor King's College, London

Preface

Students are entering A-level and undergraduate life science courses with only GCSE mathematics. Many students do not possess a thorough understanding of the basic mathematical principles which are required in these courses and those that do understand the mathematics often have difficulty applying the principles to biological problems. These deficiencies are difficult to correct and can involve the need for intensive tutorial-based courses, but with increasing student numbers and decreasing staff time the support for material which lies 'outside' the standard life science curriculum is limited. This leads to many students struggling with basic concepts, such as concentration, and if courses include areas with a strong mathematical orientation such as kinetics, energetics or even pH calculations students tend to gain little, since their time is spent struggling with the mathematics; thus they often miss the biological importance of the material.

This book has been written after discussion with undergraduates to find out the areas with which they want help. It is intended to introduce essential mathematical ideas from first principles but without the use of mathematical proofs. In the body of each chapter are worked examples so that readers can apply the mathematics and develop their confidence. At the end of each chapter are a number of questions taken from biology and these allow students to try to apply the mathematics they have learnt. The emphasis is on essential mathematics, i.e. that which students will need at some time in most courses and some of which will be applied on a daily basis. Once the mathematics has been learnt, students need to apply it. It is useful to perform the following steps when facing a numerical problem:

- (a) look at the problem and write down all the information that you have;
- (b) write down what it is you want to know;
- (c) work out what information is actually required and what is superfluous;

xiv PREFACE

- (d) establish the link between what is wanted and what is known;
- (c) apply the mathematics and find the answer!

David Phoenix
Department of Applied Biology
University of Central Lancashire

Contents

	neral Preface to the Series	XI
Prej	face	xiii
1 ľ	Numbers	1
1.1	Introduction	1
1.2	Real numbers	1
1.3	Modulus	3
1.4	Functions with multiple operations	4
1.5	Commutative and associative laws of addition	
	and multiplication	5
Sun	nmary	7
End	of unit questions	8
2 I	Fractions, Percentages and Ratios	9
2.1	Introduction	9
2.2	Fractions — rational and irrational numbers	9
2.3	Factorisation and equivalent fractions	11
2.4	Addition and subtraction of fractions	14
2.5	Multiplication of fractions	15
2.6	Division of fractions	15
2.7	Percentages	16
2.8	Ratios	19
Sun	nmary	21
End	of unit questions	22
3 I	Basic Algebra and Measurement	25
3.1	Introduction	25
3.2	Measurement	25
3.3	Algebraic notation	28
	3.3.1 Addition	29
	3.3.2 Subtraction	29
	3.3.3 Multiplication	30
	3.3.4 Division 3.3.5 Brackets	30
0.4	7 H • 41 7	30
3.4	Substitution	31
3.5	Factorising simple formulae	32
3.6	Algebraic fractions	33

i CONTENTS

	3.6.1	Multiplication and division of algebraic	
		fractions	34
	3.6.2	Addition and subtraction of algebraic	
		fractions	34
3.7		posing formulae	35
3.8	Inequ		38
	3.8.1	Intervals	39
3.9		cations in biological science	40
	3.9.1	Equilibrium constants—an example of an	
		algebraic fraction	41
	nmary		42
End	l of unit	questions	43
4]	Powers	and Scientific Notation	47
4.1	Introd	uction	47
4.2	Power	rs	47
4.3	Multi	plication and division using powers	51
4.4		es of powers	53
4.5		onal indices	53
4.6		es and biology	54
	nmary	s and biology	
		questions	56
EHC	or unit	. questions	57
5 (Concen	tration and Accuracy	59
5.1	Introd	uction	59
5.2	Conce	ntration, volume and amount	59
	5.2.1	Percentage weight/volume	60
	5.2.2	Percentage volume/volume	60
	5.2.3	Percentage weight/weight	61
	5.2.4	Moles and molarity	63
5.3	Accur 5.3.1	acy: significant figures and decimal places	66
	5.3.2	Significant figures Decimal places	66
	5.3.3	Accuracy	68 69
Sun	nmary	ricourdey	71
	-	questions	
LIIU	or unit	questions	71
6		Charts and Graphs	73
6.1	Introd	uction	73
6.2	Raw d	ata and frequency tables	73
	6.2.1	Table preparation	74
	6.2.2	Frequency tables	78
6.3		s, diagrams and plots	81
	6.3.1	Pictograms	81
	h.3.2	Pie charts	82

CONTENTS vii

	6.3.3		83
		Dot plots	85
		Histograms	88
		Scatter graphs	89
6.4	Plots l	inking three variables	96
	6.4.1	Three-dimensional plots	96
	6.4.2	S .	97
	6.4.3	Nomograms	100
Sum	mary		103
End	of unit	questions	103
7 L	inear	Functions	107
7.1	Introd	uction	107
7.2	Functi	ions	107
		Inverse functions	109
		Monotone functions	111
7.3		al linear equations	113
7.4	•	al linear equations	115
7.1	7.4.1		117
7.5		ng linear equations	119
		· ·	120
7.6	7.6.1	gical applications The Beer–Lambert law—an example of a	120
	7.0.1	special linear equation	120
	7.6.2	The Lineweaver–Burk plot	122
Sum	mary	The Emercard Burn pro-	126
		t avactions	126
Ella	or unit	t questions	120
8 P		Functions	129
8.1	Introd	luction	129
8.2	Power	r functions	129
8.3	Polyn	omials	131
8.4	Solvir	ng quadratic equations	132
	8.4.1	Ŭ 1	132
	8.4.2	Solving by using a formula	134
8.5	Appli	cations in life sciences	135
	8.5.1	Quadratics as a tool to calculate pH	136
	8.5.2	Quadratic equations and rates	137
Sum	mary		137
		t questions	138
9 E	Expone	ential Functions	141
9.1	_	luction	141
			141
9.2	Seque 9.2.1	ences Geometric sequences	141
		Arithmetic mean	143
	9.2.2	Arimmenc mean	

9.3	Expon	ential functions	144
9.4	Solvin	g exponential equations	147
9.5	Applio	cations in biology	148
		Exponential growth	148
	9.5.2	Exponential decay	151
	9.5.3	Geometric series	153
Sun	nmary		155
End	of unit	questions	155
	-	thmic Functions	157
10.1	Introd	uction	157
10.2		ng logarithms	157
	10.2.1	Logarithms to the base ten (\log_{10})	159
	10.2.2	02	160
		Natural logarithms (log _e)	160
10.3		for manipulating logarithmic expressions	161
		Law for the addition of logarithms	161
		Law for the subtraction of logarithms	162
		Law for logarithms of power terms	163
10.4	_	logarithms to transform data	164
	10.4.1	9	
		functions	165
	10.4.2		400
		functions	166
10.5		logarithmic plots	166
	10.5.1		167
10.6	6 Double	e-logarithmic plots	170
	10.6.1	The Hill plot and allosteric enzymes	171
10.7	⁷ Logari	thms and biology	173
Sun	nmary		176
		questions	177
11	Introd	uction to Statistics	179
11.1	Introd	uction	179
11.2	Sampl	ling	179
11.3	Norma	al distribution	181
11.4	Means	s, medians and modes	183
	11.4.1	The arithmetic mean	184
	11.4.2		188
	11.4.3		190
		Representing the data with a box plot	190
	11.4.5		191
11.5		ring variability	193
	11.5.1		193
	11.5.2	Standard deviation	196

CONTENTS	ix

11.6 Sampling distribution of the mean	198
11.6.1 Standard error of the mean	199
11.7 Confidence levels and the t-distribution	200
Summary	202
End of unit questions	203
Appendix: Solutions to Problems	205
Worked examples	205
End of unit questions	214
Index	227

1 Numbers

1.1 Introduction

Scientists must be able to take quantitative measurements and look for correlations within their experimental data. A scientist should therefore be able to manipulate numbers and have an appreciation of their relevance. The objectives of this chapter are:

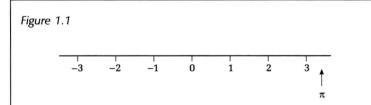
- (a) to introduce real numbers;
- (b) to develop rules for the manipulation of numbers.

1.2 Real numbers

Real numbers may be represented by their position on a **number line** (Figure 1.1). All the numbers which lie on this line are termed **real numbers** and the set is represented by the symbol \mathbb{R} . Whole numbers (**integers**) are represented by the symbol \mathbb{Z} and can be sub-grouped into positive (\mathbb{Z} +) or negative (\mathbb{Z} -) integers.

Negative numbers are written to the left of zero. The further a number is to the right, the bigger it is, so for exam-

On the number line, the further the number is to the right the bigger it is



 \mathbb{R} represents the group of all numerical values which can be represented on the number line (i.e. the real numbers) \mathbb{Z} represents the set of intergers $\{\ldots -3, -2, -1, 0, 1, 2, 3, \ldots\}$ \mathbb{Z} + represents the set of positive integers, sometimes called natural numbers (\mathbb{N}) $\{1, 2, 3, 4, \ldots\}$

 \mathbb{Z} - represents the negative integers $\{-1, -2, -3, -4, \ldots\}$

1

ple -2 is greater than -5. Addition therefore indicates that you move to the right, since the number is getting bigger; subtraction indicates that you move to the left.

It is obviously important that you are able to manipulate both positive and negative numbers. It is useful to remember that if you are adding a negative number to a positive number you can treat this as a subtraction, as shown in Example 1.1.

Example 1.1

$$(-2) + 3$$

= $3 - 2 = 1$

It may help to remember the number line. In Example 1.1 you start at position minus two (-2) and plus three (+3) tells you to move to the right three places, which takes you to position one on the number line. In Example 1.2 you start at position minus four and move one place to the left, thus giving the answer minus five.

Example 1.2

$$-4 - 1 = -5$$

If you subtract a negative number it becomes positive

answer

When dealing with negative numbers, the only rule that must be remembered is that if you subtract a negative number it becomes positive. This can be seen in Example 1.3.

Example 1.3

$$1-(-3)$$
 Subtraction of a negative gives a $positive$

Multiplying or dividing numbers of the same sign gives a positive

A similar rule applies when multiplying or dividing; if both numbers have the same sign the answer is positive, if their signs are different the answer is negative. This is illustrated in Box 1.1 and Example 1.4(a)-(c).

Example 1.4

- (a) $3 \times 2 = 6$ Both signs are the same, therefore the answer is positive
- (b) $3 \times (-2) = -6$ The signs are different, therefore the answer is negative
- (c) $(-9) \div (-3) = 3$ Both signs are the same, therefore the answer is positive

NUMBERS 3

Box 1.1 Sign rules for multiplication and division.

If you have more than two terms in the calculation, then to apply the sign rules in Box 1.1 you need to break the calculation down into parts as shown in Example 1.5.

Example 1.5

$$2 \times (-3) \times (-1)$$
 $2 \times -3 = -6$: The different signs imply that the answer is negative

$$(-6) \times (-1)$$
 $-6 \times -1 = 6$: The same signs imply that the the answer is positive

= 6

Worked examples 1.1

Evaluate:

(i)
$$2 \times -5$$
 (ii) -6×-3 (iii) $3-5$ (iv) $-2-6$ (v) $-3-(-4)$ (vi) $-6 \div -6$ (vii) $6 \div -12$.

1.3 Modulus

On some occasions it may be the size of the value that is important, rather than its sign. For example, suppose you are measuring the height of a seedling in centimetres. The exact height is 4.7 cm and you take two measurements which are recorded in Table 1.1 along with the error.

Table 1.1

Reading (cm)	Error (cm)	
4.5	-0.2	
4.7	0.2	

With the first reading you have under-estimated the height by 0.2 cm but the second reading is too large by 0.2 cm. The error in both cases is of the same size or **magnitude**; it is only the direction that is different, i.e. one is an under-estimate and the other an over-estimate. In this case it may be worthwhile considering the **absolute values**. The absolute value takes into account the magnitude or size of the change but Modulus measures the absolute value without the sign

it does not take into account the direction of the change. It is denoted by two straight lines (i.e. |-2|=2) and is usually called the **modulus**. In the example given above you can say that the **absolute error** in both measurements is 0.2 cm.

Worked examples 1.2

Evaluate:

(i)
$$-2 - |-2|$$
 (ii) $|3 - 5|$ (iii) $1 - 4 - |3|$ (iv) $3 + |2 - 3|$

1.4 Functions with multiple operations

You often have to deal with functions which contain more than one mathematical operation and it is important to know in what order to perform these operations. In general, if an expression contains brackets you always evaluate whatever is in the brackets first, then you perform multiplication and division and finally addition and subtraction (Box 1.2).

Box 1.2 Priority of operations.

- 1 Brackets
- 2 Multiplication and division
- 3 Addition and subtraction

If there is more than one set of brackets you start on the inside and work outwards.

Example 1.6

$$((3-2)\times 4+4)\div 2$$
 Innermost brackets first, so $3-2=1$
= $(1\times 4+4)\div 2$ Brackets; multiplication, so $1\times 4=4$
= $(4+4)\div 2$ Brackets; addition $4+4=8$
= $8\div 2$
= 4

It is essential that these rules are applied since failure to do so will greatly influence the outcome of the calculation, as can be seen in the following examples.

Example 1.7

$$3 + 4 \times 5 = 3 + 20$$
 Compared with $(3 + 4) \times 5 = 7 \times 5$
= 23 = 35

NUMBERS 5

Example 1.8

$$6-4 \div 2 = 6-2$$
 Compared with $(6-4) \div 2 = 2 \div 2$
= 4 = 1

Note that in Example 1.8 the expressions can be rewritten to emphasise their difference:

$$6-4 \div 2 = 6 - \frac{4}{2}$$
 and $(6-4) \div 2 = \frac{6-4}{2}$

In general, although the list of priorities tells you which operation to perform first, it is always best to use brackets to clarify what is required.

Example 1.9

$$6-4 \div 2 = 6 - (4 \div 2) = 6 - \frac{4}{2}$$

In Example 1.9 the brackets are not needed but their presence can help prevent confusion and this decreases the chance of error.

Worked examples 1.3

Evaluate:

(i)
$$3 - 9 \div 3$$
 (ii) $4 \times (2 - 3)$ (iii) $((4 + 6) \div 5 + 3) \times 3$ (iv) $10 \times 5 + 4 \times 5$ (v) $((15 - 5) + 2 \times 2) \div 7$.

1.5 Commutative and associative laws of addition and multiplication

The commutative law (Box 1.3) states that:

The order in which two numbers are added or multiplied may be interchanged.

Box 1.3 Commutative laws.

$$a+b=b+a$$

$$ab=ba$$

If this law holds then the order in which we add or multiply two numbers does not matter since the order can be interchanged. Examples 1.10 and 1.11 show this to be true.