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PREFACE

This book, which treats the standard topics in finite mathematics, is directed
towards the student in the managerial, social and life sciences. The objective is
two-fold. First, to provide the student with the background in the quantitative
techniques that are necessary in order to better understand and appreciate the
courses normally taken in one’s undergraduate training. Second, to lay the founda-
tion for more advanced courses, such as statistics and operations research. We have
hoped to accomplish this by striking a careful balance between theory and applica-
tions.

Our approach is intuitive and we state the results informally. But we took
special care to ensure that this does not compromise the mathematical content and
accuracy. The applications are drawn from many fields and we made every effort
to make them interesting, relevant and up-to-date. Numerous examples and solved
problems are used to motivate each new concept or result in order to facilitate the
student’s comprehension of the new material. Each section is accompanied by an
extensive set of exercises, which contains an ample set of problems of a routine
computational nature to help the student master new techniques, followed by an
extensive set of applitations-oriented problems to test his or her mastery of the
topics. The only pre-requisite for understanding this book is a year of high school
algebra.

Since the book contains more than ample material for a one-semester or
two-quarter course, the instructor may be flexible in choosing the topics most
suitable for his or her course. The following chart on chapter-dependency is pro-
vided to help the instructor design a course that is most suitable for the intended
audience.

Finally, I wish to express my personal appreciation to each of the following
reviewers whose many suggestions have helped make a much improved end product:
Professors Ronald D. Baker, University of Delaware; Jerry Davis, Johnson State
College; Sharon S. Hewlett, University of New Orleans; James D. Nelson, Western
Michigan University and Richard D. Porter, Northeastern University.
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I also wish to thank my colleagues: Professors A. Atmar and W. Norko for
reading portions of my manuscript and for their helpful suggestions; Professor L.
Hegarty for class testing my manuscript and Dean R. Kruse for his enthusiastic
support of this project.

My thanks also go to the editorial and production staff of Prindle Weber &
Schmidt: David Pallai, Mary LeQuense, and Sara Waller, for their assistance and
cooperation in the development and production of this book.
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1

STRAIGHT LINES AND
LINEAR FUNCTIONS

1.1

The Cartesian Coordinate System

___ number line

origin

Figure 1.1

Cartesian
coordinate
system

The system of real numbers will play a fundamental role throughout this book.
This system is made up of the set of real numbers together with the usual operations
of addition, subtraction, multiplication, and division. We shall assume that you are
familiar with the rules governing these algebraic operations (see Appendix 1).

It is convenient and useful to have a geometrical representation of the set of
real numbers. This is realized through the use of the number line which is constructed
as follows. Arbitrarily select a point on a straight line to represent the number 0.
This point is called the origin. If the line is placed horizontally, then a point at a
convenient distance to the right of the origin is chosen to represent the number 1.
Points to the right of 0 that are integral multiples of this unit length represent the
positive integers while such points to the left of 0 represent the negative integers.
Nonintegral numbers are represented by points whose distances from 0O are in the
proper proportions. In this manner a one-to-one correspondence is set up between
the set of real numbers and the set of points on the line with all the positive numbers
lying to the right of the origin and all the negative numbers lying to the left of the
origin (see Figure 1.1).

A similar representation for points in the plane (a two-dimensional space) is
realized through the Cartesian coordinate system which is constructed as follows.

1



Chapter 1 Straight Lines and Linear Functions

origin

Figure 1.2

axes

___ ordered pair

Figure 1.3

Take two perpendicular lines, one of which is normally chosen to be horizontal.
These lines intersect at a point O called the origin (see Figure 1.2).

1 94

The horizontal line is called the axis of abscissas or, more simply, the x-axis.
The vertical line is called the axis of ordinates or the y-axis. A number scale is set
up along the x-axis with the positive numbers lying to the right of the origin and
the negative numbers lying to the left of the origin. Similarly, a number scale is
set up along the y-axis with the positive numbers lying above the origin and the
negative numbers lying below the origin. Observe that the number scales need not
be the same. Indeed, in many applications different quantities are represented by
x and y; for example, x may represent the number of units of typewriters sold and
y the total revenue resulting from the sales. In such cases it is often desirable to
choose different number scales to represent the different quantities. Observe that,
by construction, the zeros of both number scales coincide with the origin of the
two-dimensional coordinate system.

A point in the plane can now be represented uniquely in this coordinate
system by an ordered pair of numbers; that is, a pair (x, y) where x is the first
number and y the second number. To see this, let P be any point in the plane (see
Figure 1.3). Draw perpendiculars from P to the x-axis and y-axis, respectively.
Then the number x is precisely the number corresponding to the point on the
x-axis at which the perpendicular through P cuts the x-axis. Similarly, y is the

P(x, y)
ypm—=———""2

(O R —




Section 1.1 The Cartesian Coordinate System 3

number corresponding to the point on the y-axis at which the perpendicular through
P crosses the y-axis.

Conversely, given an ordered pair (x, y) with x as the first number and y as
the second number, a point P in the plane is uniquely determined as follows: locate
the point on the x-axis represented by the number x, then draw a line through that
point parallel to the y-axis. Next, locate the point on the y-axis represented by the
number y and draw a line through that point parallel to the x-axis. The point of

abscissa intersection of these two lines is the point P. In the ordered pair (x, y), x is called
ordinate the abscissa or x-coordinate, y is called the ordinate or y-coordinate and together
x and y are referred to as the coordinates of the point P.

The points A=(2,3), B=(-2,3),C=(-2,-3),D=(2,-3), E=(3,2), F =
(4, 0),and G = (0, —5) are plotted in Figure 1.4. The fact that in general (x, y) # (y, x)
is clearly illustrated by points A and E in Figure 1.4.

Figure 1.4

The axes divide the plane into four quadrants. Quadrant I consists of points
P with coordinates x and y denoted by P(x, y) satisfying x >0 and y >0; Quadrant
II, the points P(x, y) where x <0 and y > 0; Quadrant III, the points P(x, y) where
x <0 and y <0; and Quadrant IV, the points P(x, y) where x>0 and y <0 (see

Figure 1.5).
t”
Quadrant I1 Quadrant I
(=, +) (+, +)
X
(0]
Quadrant I1I Quadrant IV
(=i —) (+, -)
Figure 1.5
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1.1
EXERCISES
1. Refer to the figure below and determine the coordinates of the following
points:
(a) A (b) B () C d) D (e) E (fy F

2. Refer to the figure in problem 1 to determine the quadrant in which each of
the following points is located.

(@) A (b) B ) C (d) D (e) E (f) F

3. Refer to the figure below and answer (a)—(e).

B Ay
° 44
T A
c 2T y
® —4 11
—t—t—+——+—x
-6-5 D—3—2—ll__ 1 2 3 4 3
G
E -2+ F
e -3+
_4-r

(@) Which point has coordinates (4, 2)?
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4.

5.

(b) What are the coordinates of the point B?

(¢) Which points have negative y-coordinates?

(d) Which point has a negative x-coordinate and a negative y-coordinate?
(¢e) Which point has an x-coordinate that is equal to zero?

Sketch a set of coordinate axes and plot the following points:

(@) (1,3) (b) (=2,95) () (3,-4) (d) (3,-1)
Sketch a set of coordinate axes and plot the following points:

(@) (=5/2,3/2) (b) (8,-7/2) () (1.2,-3.4) (d) (4.5,-4.5)

The distance between any two points P1(x1, y1) and P,(x», y») in the plane is given
by the formula

d=\/(x2—xl)2+()’2—Y1)2

Use this formula to complete problems 6 through 14.

® N A

9.

10.

Find the distance between the points (1, 0) and (4, 4).
Find the distance between the points (1, 3) and (4, 7).
Find the distance between the points (-2, 1) and (10, 6).
Find the distance between the points (—1, 3) and (4, 9).

A furniture store offers free set-up and delivery services to all points within

a 25 mile radius of its warehouse distribution center. If you live 20 miles east and
14 miles south of the warehouse, will you incur a delivery charge for furniture
purchased from this store? Justify your answer.

11.

A grand tour of four cities begins at city A with successive stops at cities B,

C, and D before returning to city A. If the cities are located as shown in the figure
below, find the total distance covered on the tour.

C(~800, 800) y (miles)
&5
Y T~ B(400, 300)
~ 500 il
—LH—F*—H—O-‘ x (miles)
D (- 800, 0) 1 40,0 500
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12. Mr. Barclay wishes to determine which antenna he should purchase for his
home. The T.V. store has supplied him with the following information:

Range in Miles

VHF UHF Model Price
30 20 A $40.00
45 35 B $50.00
60 40 C $60.00
75 55 D $70.00

He wishes to receive programs from channel 17 (VHF), which is located 25 miles
east and 35 miles north of his home; and programs from channel 38 (UHF), which
is located 20 miles south and 32 miles west of his home. Which model will allow
him to receive both channels at the least cost? (Assume there is flat terrain between
his home and both broadcasting stations.)

13. Towns A, B, C, and D are located as shown in the following figure. There
are two highways linking town A to town D. Route 1 runs from town A to town
D via town B and Route 2 runs from town A to town D via town C. A salesman
wishes to drive from town A to town D. If traffic conditions are such that he could
expect to average the same speed on either route, which highway should he take
in order to arrive at his destination in the shortest time?

4 y(miles)
1 C(800, 1500)

D(1300, 1500)

$ x (miles)

14. Refer to the figure shown in problem 13. Suppose a fleet of 100 automobiles
are to be shipped from an assembly plant located in town A to town D. They may
be shipped either by freight train along Route 1 at a cost of 11 cents per mile per
automobile or by truck along Route 2 at a cost of 103 cents per mile per automobile.
Which means of transportation minimizes the shipping cost? What is the net savings?



