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Preface

For many years I have worked in the area of reconfigurable computing, whose goal is to develop
tools and methodologies to facilitate the use of field programmable gate arrays (FPGAs) as
co-processors for high-performance computer systems.

One of the main challenges in this discipline is the “programming problem,” in which the prac-
tical application of FPGAs is fundamentally limited by their tedious and error-prone program-
ming model. This is of particular concern because this problem is a consequence of the
technology’s strengths: FPGAs operate with fine grain concurrency, where the programmer
can control the simultaneous behavior of every circuit on the chip. Unfortunately, this control
also requires that the programmer manage fine grain constraints such as on-chip memory usage
and routing congestion. The CPU programmer, on the other hand, needs only consider the poten-
tial state of the CPU at each line of code, while on-chip resources are automatically managed by
the hardware at runtime.

I recently realized that modern embedded systems may soon face a similar programming prob-
lem. Battery technology continues to remain relatively stagnant, and the slowing of Moore’s
Law became painfully evident after the nearly 6-year gap between 65 and 28 nm fabrication
technology. At the same time, consumers have come to expect the continued advancement
of embedded system capabilities, such as being able to run real-time augmented reality software
on a processor that fits in a pair of eyeglasses.

Given these demands for energy efficiency and performance, many embedded processor ven-
dors are seeking more energy-efficient approaches to microarchitecture, often involving target-
ing the types of parallelism that cannot be automatically extracted from software. This will
require cooperation of the programmers to write parallel code. This is a lot of to ask of program-
mers, who will need to juggle both functionality and performance on a resource- and power-
constrained platform that includes a wide range of potential sources of parallelism from multi-
cores to GPU shader units.

Many universities have developed “unified” parallel programming courses that cover the spec-
trum of parallel programming from distributed systems to manycore processors. However, the
topic is most often taught from the perspective of high-performance computing as opposed to
embedded computing.

With the recent explosion of advanced embedded platforms such as the Raspberry Pi, I saw a
need to develop curriculum that combines topics from computer architecture and parallel pro-
gramming for performance-oriented programming of embedded systems. I also wanted to
include interesting and relevant projects and case studies for the course to avoid the traditional
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types of dull course projects associated with embedded systems courses (e.g., blink the light)
and parallel programming courses (e.g., write and optimize a Fast Fourier Transform).

While using these ideas in my own embedded systems course, and I often find the students com-
peting among themselves to achieve the fastest image rotation or the fastest Mandelbrot set gen-
erator. This type of collegial competition cultivates excitement for the material.

USING THIS BOOK

This book is intended for use in a junior- or senior-level undergraduate course in a computer
science or computer engineering curriculum. Although a course in embedded systems may
focus on subtopics such as control theory, robotics, low power design, real-time systems, or
other related topics, this book is intended as an introduction to performance-oriented program-
ming for lightweight system-on-chip embedded processors.

This book should accompany an embedded design platform such as a Raspberry Pi, on which the
student can evaluate the practices and methodologies described.

When using this text, students are expected to know the C programming language, have a basic
knowledge of the Linux operating system, and understand basic concurrency such as task
synchronization.

INSTRUCTOR SUPPORT

Lecture slides, exercise solutions, and errata are provided at the companion website:
textbooks.elsevier.com/9780128003428
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