ARM® Programming and Optimization

Jason D. Bakos

LB L asm(“pld %[nextx]\n\t”

3 . T ijs,z(x addr]€128\n\t’
: £0 11 €128 \n\t-

S - 19« 1@128\n\t”
< aNS - :
Tem\ A “v1ldil.3- i !@l,@
s .
T o "wldl .32 | 14J» r0]1@128\1

'~‘3} [x071@128\n
6}, [r0]TeT28\nNt"
ldl. A0 e L28\n\t"
“vldl.32 {qg8},rO094el28\n\t"
‘vimlal. B327g2, q0, gl\n\t”
“vmla. 32~ g3, g0, g2\n\t’
‘'vimlaf32 n
“vmla.£32 g5, b, g4\n)lt”
vnnla.f32 g ¥, gb5\n\8”
“ymla.£32. .97, g0, g6\n\t”
“ymla. £32 g8, g0, q7\n\t
. ' ret1.32 {qB), %[d ade
dr]€128\n\t” : : [x _addr]“m” (i]),. [nextx

1"m” (x[1+16]), ¢ "m” (d), [coeff ad-
] soeff 4) ; , "T2", "EE, "ql”,

MORGAN KAUFMANN Ll's v

W

~0) ~ 2
‘T‘;" g.:

.““

- L U
. -

Embedded Systems

ARM® Programming and Optimization

Jason D. Bakos

Department of Computer Science and Engineering
University of South Carolina
Columbia, SC

(I ;
!

T T
rﬁ }!l)\j‘ LJ 14 b

. T
7‘}& :]"J RN
s

AMSTERDAM ¢ BOSTON ¢ HEIDELBERG ¢ LONDON
N NEW YORK e OXFORD e PARIS ¢ SAN DIEGO
akeles. SAN FRANCISCO © SINGAPORE ¢ SYDNEY ¢ TOKYO

Morgan Kaufmann is an imprint of Elsevier

Acquiring Editor: Steve Merken

Editorial Project Manager: Nathaniel McFadden
Project Manager: Sujatha Thirugnana Sambandam
Designer: Mark Rogers

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2016 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or any information storage and retrieval system, without permission in writing from the
publisher, Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements
with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our

website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may
be noted herein),

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes
in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information,
methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety
and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury
and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any
methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-800342-8

For information on all Morgan Kaufmann publications
visit our website at http://store.elsevier.com/

qa Working together
E ~4AM8 1 grow libraries in

Bookfid developing countries

www.elsevier.com ¢ www.bookaid.org

Embedded Systems

HoNIREE, FE B S5E #EPDFIE) 7] : www. ertongbook. com

For Lumi, Jade, and Justin

R
Preface

For many years I have worked in the area of reconfigurable computing, whose goal is to develop
tools and methodologies to facilitate the use of field programmable gate arrays (FPGAs) as
co-processors for high-performance computer systems.

One of the main challenges in this discipline is the “programming problem,” in which the prac-
tical application of FPGAs is fundamentally limited by their tedious and error-prone program-
ming model. This is of particular concern because this problem is a consequence of the
technology’s strengths: FPGAs operate with fine grain concurrency, where the programmer
can control the simultaneous behavior of every circuit on the chip. Unfortunately, this control
also requires that the programmer manage fine grain constraints such as on-chip memory usage
and routing congestion. The CPU programmer, on the other hand, needs only consider the poten-
tial state of the CPU at each line of code, while on-chip resources are automatically managed by
the hardware at runtime.

I recently realized that modern embedded systems may soon face a similar programming prob-
lem. Battery technology continues to remain relatively stagnant, and the slowing of Moore’s
Law became painfully evident after the nearly 6-year gap between 65 and 28 nm fabrication
technology. At the same time, consumers have come to expect the continued advancement
of embedded system capabilities, such as being able to run real-time augmented reality software
on a processor that fits in a pair of eyeglasses.

Given these demands for energy efficiency and performance, many embedded processor ven-
dors are seeking more energy-efficient approaches to microarchitecture, often involving target-
ing the types of parallelism that cannot be automatically extracted from software. This will
require cooperation of the programmers to write parallel code. This is a lot of to ask of program-
mers, who will need to juggle both functionality and performance on a resource- and power-
constrained platform that includes a wide range of potential sources of parallelism from multi-
cores to GPU shader units.

Many universities have developed “unified” parallel programming courses that cover the spec-
trum of parallel programming from distributed systems to manycore processors. However, the
topic is most often taught from the perspective of high-performance computing as opposed to
embedded computing.

With the recent explosion of advanced embedded platforms such as the Raspberry Pi, I saw a
need to develop curriculum that combines topics from computer architecture and parallel pro-
gramming for performance-oriented programming of embedded systems. I also wanted to
include interesting and relevant projects and case studies for the course to avoid the traditional

xiv Preface

types of dull course projects associated with embedded systems courses (e.g., blink the light)
and parallel programming courses (e.g., write and optimize a Fast Fourier Transform).

While using these ideas in my own embedded systems course, and I often find the students com-
peting among themselves to achieve the fastest image rotation or the fastest Mandelbrot set gen-
erator. This type of collegial competition cultivates excitement for the material.

USING THIS BOOK

This book is intended for use in a junior- or senior-level undergraduate course in a computer
science or computer engineering curriculum. Although a course in embedded systems may
focus on subtopics such as control theory, robotics, low power design, real-time systems, or
other related topics, this book is intended as an introduction to performance-oriented program-
ming for lightweight system-on-chip embedded processors.

This book should accompany an embedded design platform such as a Raspberry Pi, on which the
student can evaluate the practices and methodologies described.

When using this text, students are expected to know the C programming language, have a basic
knowledge of the Linux operating system, and understand basic concurrency such as task
synchronization.

INSTRUCTOR SUPPORT

Lecture slides, exercise solutions, and errata are provided at the companion website:
textbooks.elsevier.com/9780128003428

e
Acknowledgments

Several students assisted me in the development of this book.

During spring and summer 2013, undergraduate students Benjamin Morgan, Jonathan Kilby,
Shawn Weaver, Justin Robinson, and Amadeo Bellotti evaluated the DMA controller and
performance monitoring unit on the Raspberry Pi’s Broadcom BCM2835 and the Xilinx
Zynq 7020.

During summer 2014, undergraduate student Daniel Clements helped develop a uniform
approach for using the Linux perf_event on the ARM11, ARM Cortex A9, and ARM Cortex
ALlS. Daniel also evaluated Imagination Technology’s OpenCL runtime and characterized its
performance on the PowerVR 544 GPU on our ODROID XU Exynos 5 platform.

During summer 2015, undergraduate student Friel “Scottie” Scott helped evaluate the Mali
T628 GPU on the ODROID-XU3 platform and proofread Chapter 5.

Much of my insight about memory optimizations for computer vision algorithms were an out-
growth of my graduate student Fan Zhang’s dissertation on auto-optimization of stencil loops
on the Texas Instruments Keystone Digital Signal Processor architecture.

[would like to thank the following reviewers, who provided feedback, insight, and helpful sug-
gestions at multiple points throughout the development of the book:

B Miriam Leeser, Northeastern University

® Larry D. Pyeatt, South Dakota School of Mines and Technology

® Andrew N. Sloss, University of Washington, Consulting Engineer at ARM Inc.
® Amr Zaky, Santa Clara University

[would like to thank Morgan Kaufmann and specifically to Nate McFadden for his constant
encouragement and limitless patience throughout the writing. I am especially grateful for Nate’s
open-mindedness and flexibility with regard to the content, which continually evolved to keep
current with new ARM-based embedded development platforms being released while I was
developing the content. I also wish to thank Sujatha Thirugnana Sambandam for her
detail-oriented editing and to Mark Rogers for designing the cover.

HoNIREE, FE B S5E #EPDFIE) 7] : www. ertongbook. com

-
Contents

PIEface ...cciveiiiniiiieineiieiniiessiississes e sssse s s sbesaaessnssssssnananes Xiii

ACKNOWIEAZMENLSoveeiveeiiiiiniiiinieteis e e XV

CHAPTER 1 The Linux/ARM embedded platform.............ccccccovvrnrnnnn. 1

1.1 Performance-Oriented Programmingccevveeenns 3

1.2 ARM Technologyccceecemvvueeniviiriinineinnnicienneenn 6

1.3 Brief History of ARMc.coocviivviniiniiniiiiiieninns 7

1.4 ARM Programmingc..ccccovcmeninnnsnsninneseniennnes 8

1.5 ARM Architecture Set Architecture........cccoecvveienen 8

1.5.1 ARM general purpose registers..........ccceeurunn 9

1.5:2) Satis TERISIET cisvvemsavorsrssesivmsessssersrmrersisanes 11

1.5.3 Memory addressing modes...........c.cocueveninnn. 12

1.5.4 GNU ARM assemblerccoceevveriiinniinninnne 13

1.6 Assembly Optimization #1: Sorting.........c.c.cceecreene 14

1.6.1 Reference implementation..........cccecvevviveenenns 14

1.6.2 Assembly implementationccccocvvieeene 15

1.6.3 Result verification.......covveeiiniinnninne 18

1.6.4 Analysis of compiler-generated code........... 21

1.7 Assembly Optimization #2: Bit Manipulation....... 22

1.8 Code Optimization Objectivesccvevvverirennens 25
1.8.1 Reducing the number of executed

INSEIUCHIONS cvvvveiiecieveeree et 25

1.8.2 Reducing average CPl.........ococceiemniieiieninnn 25

1.9 Runtime Profiling with Performance Counters...... 28

1.9.1 ARM performance monitoring unit 28

1.9.2 Linux Perf Evetit.omsosecesesmoenarases 29

1.9.3 Performance counter infrastructure.............. 30

1.10 Measuring Memory Bandwidth...........cocooniiiinne 34

1.11 Performance ResultScccovvrereiinieniesiciiieiiianinnee 37

1.12 Performance Bounds.........ccciiiiniinniinininen. 38

1.13 Basic ARM Instruction Setccocevevvienirucnrecnnns 38

1.13.1 Integer arithmetic instructions..........c.o..... 39

1.13.2 Bitwise logical instructionsccocceeunen. 39

1.13.3 Shift inStructions........ccocveeevueeveeeiviecinannnnn. 39

1.13.4 Movement insStructionsc.cceeeveeeiusrenens 40

1.13.5 Load and store instructionscccocueuee.. 40

vii

viii Contents

1.13.6 Comparison inStructionsceeveveevennes 42
1.13.7 Branch inStructions............cecevvevereerennnneen. 42
1.13.8 Floating-point instructions..............c.c.v..... 42
1.14 Chapter Wrap-Upccccevveieiieiieiriccreccieisinenseennns 44
EXEICISES ...voviviiiririsitiiciiicstcr et st 45

CHAPTER 2 Multicore and data-level optimization:

OpenMP and SIMDccoovrvmirierinieneeieiseenins 49
2.1 Optimization Techniques Covered by this Book...50
2.2 Amdahl’s Law ...ccocveviieivninieriiiereeeeeee e 52
2.3 Test Kernel: Polynomial Evaluation...................... 53
2.4 Using Multiple Cores: OpenMP...........ccoceevreuenens 55

24,1 OpenMP ditectiVEs wiuiwissmssssssamssissmsis 56
2.4.2 SCOPE...ooieiiirieiitcsreiie ettt eaenes 58
2.4.3 Other OpenMP directives.......cceveerereereeruenens 62
2.4.4 OpenMP synchronizationc.ceceeeruenens 63
2.4.5 Debugging OpenMP codecooererrueennn. 66
2.4.6 The OpenMP parallel for pragma................. 68
2.47 OpenMP with performance counters 70
2.4.8 OpenMP support for the Horner kernel 71
2.5 Performance Bounds.........cccocoeivinciinicnnecenen, 71
2.6 Performance Analysis........ccoeueeevenieeeniereanenne 73
2.7 Inline Assembly Language in GCC..........ccoueunneen. 74
2.8 Optimization #1: Reducing Instructions per

FIOD coiiiiciiiic s 76
2.9 Optimization #2: Reducing CPI.........ccccecevereannne. 79
2.9.1 Software pipelining.........cc.cocevvrvererevererrennes 81
2.9.2 Software pipelining Horner’s method.......... 84

2.10 Optimization #3: Multiple Flops per Instruction
with Single Instruction, Multiple Data................... 92
2.10.1 ARMI11 VFP short vector instructions....... 94
2.10.2 ARM Cortex NEON instructions 97
2.10.3 NEON intrinsics.......cccoesverereresiesressincnnnns 100
2.11 Chapter Wrap-Upcccoeeviveriiiiiieeeieieee e 101
EXCICISES awssssseswirnsssnsvvimnivsssyssssvinssissantssmmasssmbamssnsossosmiss 102
CHAPTER 3 Arithmetic optimization and the Linux Framebuffer 105
3.1 The Linux Framebuffercccccccciniiiiiniininnens 106
3.2 Affine Image Transformations.........c.cccoevvieieneennns 108

3.3 Bilinear Interpolation.....uesssassissassismssesisssasmesin 110

Contents ix

3.4 Floating-Point Image Transformation...........ccc.e... 110
3.4.1 Loading the imageccccceiviniiciiiicninnne. 113
3.4.2 Rendering frames........ccccoeeeeirvrinncneneennns 115

3.5 Analysis of Floating-Point Performance................ 119

3.6 Fixed-Point ArithmetiC.......cccovvueivveeviieiriieeniiennnanns 120
3.6.1 Fixed point versus floating point:

ACCUTACY ovvvreniriiimiiinneincsniessreessrnsssnes e sssnes 121
3.6.2 Fixed point versus floating point:

RaANEE ..o 121
3.6.3 Fixed point versus floating point:

PrECISION sosssesonsounsossosssssssnsasassarsmonssssansassass 122
3.6:4: Using, fixed POint.qewmmswsssissrssescsssamsseseran 123
3.6.5 Efficient fixed-point additionccccenene. 123
3.6.6 Efficient fixed-point multiplication.............. 127
3.6.7 Determining radix point position................. 130
3.6.8 Range and accuracy requirements for

image transformation..........ccceceeceiriiincennen. 131
3.6.9 Converting from floating-point to

fixed-point arithmeticccecevvveiniinicennn, 132

3.7 Fixed-Point Performance .:..sssssissssovionisssmsisisns 134

3.8 Real-Time Fractal Generation..........c.cccceeververennnans 134
3.8.1 Pixel coloring........covvernerreiieniesereneenne 137
3.8.2 ZOoOMING N .eovvvveriiriiciiiniicniccie e 138
3.8.3 Range and accuracy requirements................ 139

3.9 IChapter WIap-Up «iuausmssssiassissssrmsiammssisiassvsisns 140

B R CTCTSES s rusuasnnassvuonssnssiessvis eunsis o sos s susmsmis saspassonsvasiss 141

CHAPTER 4 Memory optimization and video processing 147
4.1 Stencil LOoOPS ccovvivieineeieeiiieeeeeee e eree s 148
4.2 Example Stencil: The Mean Filter...............ceeu.. 149
4.3 Separable Filtersc.cocoeveeviiinviniieieniinienisiiienine 150

4.3.1 Gaussian blur.......cccoceerinvvinnennicnienieneenen. 151
4.3.2 The Sobel filter ..issimmmvimismemamirmismies 153
4.3.3 The Harris corner detectorcvevvennes, 156
4.3.4 Lucas-Kanade optical flow..........cccceveneee. 158
4.4 Memory Access Behavior of 2D Filters 160
4.4.1 2D data representation...........ccccveeevevueernn. 161
4.4.2 Filtering along the rowcceevevvevrinneennn. 162
4.4.3 Filtering along the column 163

4.5 LoD TIHNG i cssmewssississssssssssssvissssossssiposammsmvssis 164

x Contents

4.6 Tiling and the Stencil Halo Regionc.ccccvvienas 167
4.7 Example 2D Filter Implementation...................... 167
4.8 Capturing and Converting Video Frames............. 172
4.8.1 YUV and chroma subsamplingc........ 172
4.8.2 Exporting tiles to the frame buffer............. 174

4.9 Video4Linux Driver and API.......c.ccocovvviiniinanne 176
4.10 Applying the 2D Tiled Filter......cccccovevivuiviiiinnnnen 181
4.11 Applying the Separated 2D Tiled Filter............... 182
4.12 Top-Level Loop......ccoeveiniviniiiiniiciiienicnciccnen 182
4.13 Performance Resultsooceouererivercrinnnvcneneenns 183
4.14 Chapter Wrap-Up saesasssssssssmemssises ssossanss 184
B TCASE R sasisnsssssoss osasssussohosesaionnsysime srassassussupsvssressgens 184

CHAPTER 5 Embedded heterogeneous programming

With OPenCL...........cocoooiiiiicnceccs s 187
5.1 GPU Microarchit€Cture......ovvvernniiveisinniinienniennens 189
5.2 OPENCL....niomsmissimmssiiss isconsismasss irserssivoiboivsisissmavenss 190
5.3 OpenCL Programming Model, Idioms, and
ADSHACLIONE 5oovamsravsavenmsmisssspessossaeimraisivsssmiinatoe 191
5.3.1 The host/device programming model 191
5.3.2 Error checkingccocvevviivinviiiiivancniinninns 192
5.3.3 Platform layer: Initializing the platforms..... 194
5.3.4 Platform layer: Initializing the devices........ 197
5.3.5 Platform layer: Initializing the context........ 199
5.3.6 Platform layer: Kernel control 201
5.3.7 Platform layer: Kernel compilation.............. 202
5.3.8 Platform layer: Device memory allocation..205
5.4 Kernel Workload Distribution.......cccevvevisivensiivinnnns 207
5.4.1 DeviCe MEMOTY ..c.uveeeiiereaiivrreeriererioreeeessinenes 208
5.4.2 Kernel parameters..........c.cocvcerciriisesnieneenaes 210
5.4.3 Kernel vectorizationcceevenviccisienninnns 213
5.4.4 Parameter space for Horner kernel 214
5.4.5 Kernel attributescccccvveviiivniiniiinniennnn. 216
5.4.6 Kernel dispatch..........ccccoviiiiiviniinniiniiiiniens 216
5.5 OpenCL Implementation of Horner’s Method:
Device Codecoovevirviiciiiiiiiiiicii e 222
5.5.1 Verification.........oesesscrsessnsssnsssssssssssasissessssasses 225
5.6 Performance Results..ciiasssesesmmmunssssnasimonss 221

5.6.1 Parameter exploration...........ccccceecieninnninnnns 227

Contents xi

5.6.2 Number of workgroups.........cccoeeevevvieiiiinnnns 227
5.6.3 WOrkgroup SizZe.........cccevvvvivenniniinivereinnnsnnnens 228
5.6.4: VECtOr SIZE.....eorensseesmasmsaivsissasssassissasismessss 229
5.7 Chapter Wrap-Up' ...sussssmssmsaursassnssssiasassss 229
EXETCISEE vavvssssswasnivvnsinssissssssisseuiissssssuimaassassavmsasmosasnsanseses 230

Appendix A Adding PMU support to Raspbian for the

Generation | Raspberry Pi.....cccooiiiiiiiiiiiiinnnn 233
Appendix B NEON intrinsic reference..........ccocevniniinieinniincnnnn 237
Appendix ‘C OpenCL TefeTence......cusssisssassississasmessisnssssnsrassssassasss 253

