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Preface to the Fourth Edition

Group Theory is a vast subject and, in this Introduction (as well as in the
earlier editions), I have tried to select important and representative theorems
and to organize them in a coherent way. Proofs must be clear, and examples
should illustrate theorems and also explain the presence of restrictive hypo-
theses. I also believe that some history should be given so that one can
understand the origin of problems and the context in which the subject
developed.

Just as each of the earlier editions differs from the previous one in a signifi-
cant way, the present (fourth) edition is genuinely different from the third.
Indeed, this is already apparent in the Table of Contents. The book now
begins with the unique factorization of permutations into disjoint cycles and
the parity of permutations; only then is the idea of group introduced. This is
consistent with the history of Group Theory, for these first results on permu-
tations can be found in an 1815 paper by Cauchy, whereas groups of permu-
tations were not introduced until 1831 (by Galois). But even if history were
otherwise, I feel that it is usually good pedagogy to introduce a general
notion only after becoming comfortable with an important special case. I
have also added several new sections, and I have subtracted the chapter on
Homological Algebra (although the section on Hom functors and character
groups has been retained) and the section on Grothendieck groups.

The format of the book has been changed a bit: almost all exercises now
occur at ends of sections, so as not to interrupt the exposition. There are
several notational changes from earlier editions: I now write H < G instead
of H = G to denote “H is a subgroup of G”; the dihedral group of order
2n is now denoted by D,, instead of by D,; the trivial group is denoted by 1
instead of by {1}; in the discussion of simple linear groups, I now distinguish
elementary transvections from more general transvections; 1 speak of the



Vil Preface to the Fourth Edition

fundamental group of an abstract simplicial complex instead of its edgepath
group.

Here is a list of some other changes from earlier editions.

Chapter 3. The cycle index of a permutation group is given to facilitate use
of Burnside’s counting lemma in coloring problems; a brief account of mo-
tions in the plane introduces bilinear forms and symmetry groups; the affine
group is introduced, and it is shown how afline invariants can be used to
prove theorems in plane geometry.

Chapter 4. The number of subgroups of order p* in a finite group is counted
mod p; two proofs of the Sylow theorems are given, one due to Wielandt.

Chapter 5. Assuming Burnside’s p*q” theorem, we prove P. Hall’s theorem
that groups having p-complements are solvable; we give Ornstein’s proof
of Schur's theorem that G/Z(G) finite implies G’ finite.

Chapter 6. There are several proofs of the basis theorem, one due to
Schenkman,; there is a new section on operator groups.

Chapter 7. An explicit formula is given for every outer automorphism of
Se; stabilizers of normal series are shown to be nilpotent; the discussion of
the wreath product has been expanded, and it is motivated by computing the
automorphism group of a certain graph; the theorem of Gaschiitz on comple-
ments of normal p-subgroups is proved; a second proof of Schur’s theorem
on finiteness of G’ is given, using the transfer; there is a section on projective
representations, the Schur multiplier (as a cohomology group), and covers;
there is a section on derivations and H*, and derivations are used to give
another proof (due to Gruenberg and Wehrfritz) of the Schur—Zassenhaus
lemma. (Had 1 written a new chapter entitled Cohomology of Groups, I
would have felt obliged to discuss more homological algebra than is appro-
priate here.)

Chapter 8. There is a new section on the classical groups.

Chapter 9. An imbedding of S, into the Mathieu group M, is used to
construct an outer automorphism of .

Chapter 10. Finitely gencrated abelian groups are treated before divisible
groups.

Chapter 11. There is a section on coset enumeration; the Schur multiplier
is shown to be a homology group via Hopf’s formula; the number of genera-
tors of the Schur multiplier is bounded in terms of presentations; universal
central extensions of perfect groups are constructed; the proof of Britton’s
lemma has been redone, after Schupp, so that it is now derived from the
normal form theorem for amalgams.

Chapter 12. Cancellation diagrams are presented before giving the difficult
portion of the proof of the undecidability of the word problem.

In addition to my continuing gratitude to those who helped with the first
three editions, T thank Karl Gruenberg, Bruce Reznick, Derek Robinson,
Paul Schupp, Armond Spencer, John Waiter, and Paul Gies for their help on
this volume.

Urbana, Illinois Joseph J. Rotman



From Preface to the Third Edition

Quand j’ai voulu me restreindre, je suis tombé dans 'obscuriteé;
j'al préféré passer pour un peu bavard.

] H. POINCARE, Analysis situs,
Journal de 'Ecole Polytechnique, 1895, pp. 1-121,

Although permutations had been studied earlier, the theory of groups really
began with Galois (1811-1832) who demonstrated that polynomials are best
understood by examining certain groups of permutations of their roots. Since
that time, groups have arisen in almost every branch of mathematics. Even in
this introductory text we shall see connections with number theory, combina-
torics, geometry, topology, and logic.

By the end of the nineteenth century, there were two main streams of group
theory: topological groups (especially Lie groups) and finite groups. In this
century, a third stream has joined the other two: infinite (discrete) groups.
It is customary, nowadays, to approach our subject by two paths: “pure”
group theory (for want of a better name) and representation theory. This
book is an introduction to “pure” (discrete) group theory, both finite and
infinite.

We assume that the reader knows the rudiments of modern algebra, by
which we mean that matrices and finite-dimensional vector spaces are
friends, while groups, rings, fields, and their homomorphisms are only ac-
quaintances. A familiarity with elementary sct theory is also assumed, but
some appendices are at the back of the book so that readers may see whether
my notation agrees with theirs.

I am fortunate in having attended lectures on group theory given by L.
Kaplansky, S. Mac Lane, and M. Suzuki. Their influence is evident through-
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out in many elegant ideas and proofs. I am happy to thank once again those
who helped me (directly and indirectly) with the first two editions: K.I. Appel,
M. Barr, W.W. Boone, J.L. Britton, G. Brown, D. Collins, C. Jockusch,
T. McLaughlin, C.F. Miller, III. H. Paiey, P. Schupp, F.D. Veldkamp, and
C.R.B. Wright. It is a pleasure to thank the following who helped with the
present edition: K.I. Appel, W.W. Boone, E.C. Dade, F. Haimo, L. McCulloh,
P.M. Neumann, E. Rips, A. Spencer, and J. Walter. I particularly thank
F. Hoffman, who read my manuscript, for his valuable comments and
suggestions.

Addendum to Second Corrected Printing
Many mistakes in the first printing have been corrected in this new printing.
I thank those readers, especially Hung-jen Hsu, Dae Hyun Paek, and Jack

Shamash, who brought them to my attention.

February, 1999 Joseph Rotman



To the Reader

Exercises in a text generally have two functions: to reinforce the reader’s
grasp of the material and to provide puzzles whose solutions give a certain
pleasure. Here, the exercises have a third function: to enable the reader to
discover important facts, examples, and counterexamples. The serious reader
should attempt all the exercises (many are not difficult), for subsequent proofs
may depend on them; the casual reader should regard the exercises as part of
the text proper.
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CHAPTER 1

Groups and Homomorphisms

Generalizations of the quadratic formula for cubic and quartic polynomials
were discovered in the sixteenth century, and one of the major mathematical
problems thereafter was to find analogous formulas for the roots of polyno-
mials of higher degree; all attempts failed. By the middle of the eighteenth
century, it was realized that permutations of the roots of a polynomial f(x)
were important; for example, it was known that the coeflicients of f(x) are
“symmetric functions” of its roots. In 1770, J.-L. Lagrange used permutations
to analyze the formulas giving the roots of cubics and quartics,' but he
could not fully develop this insight because he viewed permutations only as
rearrangements, and not as bijections that can be composed (see below).
Composition of permutations does appear in work of P. Ruffini and of P.
Abbati about 1800; in 1815, A.L. Cauchy established the calculus of permuta-
tions, and this viewpoint was used by N.H. Abel in his proof (1824) that there
exist quintic polynomials for which there is no generalization of the qua-

! One says that a polynomial (or a rational function) f of u variables is r-valued if, by permuting
the variables in all possible ways, one obtains exactly r distinct polynomials. For exam-
ple, fix,, X5, X3) = Xy + X3 + X3 is 8 1-valued function, while g(x,, x, xX3)=x%; +x3is a
3-valued function.

To each polynomial f(x) of degree y, Lagrange associated a polynomial, called its resolvent,
and a rational function of ; variables. We quote Wussing (1984, English translation, p. 78): “This
connection between the degree of the resolvent and the number of values of a rational function
leads Lagrange ... to consider the number of values that can be taken on by a rational
function of y variables. His conclusion is that the number in guestion is always a divisor of
u!. ... Lagrange saw the ‘metaphysics’ of the procedures for the solution of algebraic equations
by radicals in this connection between the degree of the resolvent and the valuedness of rational
functions. His discovery was the starting point of the subsequent development due to Ruffini,
Abel, Cauchy, and Galois. ... It is remarkable to see in Lagrange's work the germ, in admittedly
rudimentary form, of the group concept.” (See Examples 3.3 and 3.3’ as well as Exercise 3.38)



