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PREFACE

This volume contains papers and abstracts by participants of the
Conference on Riemann Surfaces and Related Topics, which was held at
the State University of New York at Stony Brook, June 5-9, 1978. This
was the fourth in a series of conferences on more or less the same subject
(Tulane 1965, Stony Brook 1969, Maryland 1973). We invited papers from
all the Conference participants, with acceptance for publication subject to
refereeing. All the manuscripts were indeed refereed by participants, and
not all were accepted.

As usual, thanks are due to the National Science Foundation for
financial support, the State University of New York at Stony Brook for its
hospitality, and Princeton University Press for providing a series where
these Proceedings could be published (volumes 66 and 79 contain the
Proceedings of the previous two Conferences). Most of all we thank the
participants in the Conference who wrote these papers and who refereed
them, who gave invited lectures and seminar talks, and who talked mathe-
matics and created the atmosphere of excitement that made our publishing
effort worthwhile.

We were particularly pleased by the appearance (both at the Conference
and in these Proceedings) of many new (both young and old) faces. Mathe-
maticians from many diverse fields are now interested in Riemann Surfaces
and Kleinian groups. We are delighted that the old classical theory of

functions of one complex variable still shows so many signs of vitality.

I. Kra

B. Maskit
MAY 1979
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A GEOMETRIC PROPERTY, OF BERS’ EMBEDDING
OF THE TEICHMULLER SPACE

William Abikoff

In this short note we prove a geometric property of the Bers embedding
of the Teichmiiller space. To fix the notation, let G be a finitely gener-
ated Fuchsian group of the first kind acting in the unit disc A. The Bers
embedding of T(G) = T(A/G) represents T(G) in the space B of bound-
ed quadratic differentials ¢ for G in the exterior E of A . In the

usual way we associate to each ¢ ¢ B, the normalized solution
qu(z) . ;— + z b, (#) 7
1

of the Schwarzian differential equation ff(b, z{ = ¢. It is important to
note that f(ﬁ’ hence bn(qS) is a holomorphic function on B. Set GqS =
qu Gf(b_l and let i: T(G) > B be the Bers embedding. If ¢eT = (T(G))
then qu is schlicht and GqS is a b-group. Let A(GQS) denote the limit
set of Gé and m(¢) be the area of A(Gé).

We prove the following
THEOREM. If ¢ € di(T(G)) and m(¢) =0, then & ¢ 9 Ext i(T(Q)).

Proof. The tripartite classification of b-groups shows that if & ¢di(T(G))
then Gé is either totally degenerate or has accidental parabolic trans-

formations. The two cases must be handled separately.

© 1980 Princeton University Press
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4 WILLIAM ABIKOFF

If Gd> has accidental parabolic transformations, then there is some
Y € GqS so that 7(¢) = tr2 ¥y = 4, but 7(¢) is a nonconstant holomor-
phic function on B. Thus near ¢, r takes on all values sufficiently
close to 4. It follows that there are groups G‘/I arbitrarily close to Gé
which have elliptic elements of infinite order. Such groups are not Klein-
ian and ¢ £ di(T(G)).

We proceed to the case where G(b is totally degenerate. Set

A: B—>[~oc,77]

Y <1 - 2 nlbn(¢)[2> -
1
Since bn(d/) is holomorphic on B, A is plurisuperharmonic. Further,

Gronwall’s Area Theorem says that if f([r is schlicht then A(y) is the
area of C\f(//(E)' Assume GQS ¢ Int i(T(G)). Then any holomorphic map

h:ZeB
0 b &

satisfies

A(d) > (2! f A(h(eif)do > 0.
oA

But we may choose a holomorphic disc h(A) with center ¢ and intersect-
ing i(T(G)) along a nontrivial boundary arc and such that h([g) CUT(Q)).
It follows from the above inequality that A(¢) > 0. But for totally degen-
erate groups, A(@) = m(¢) and we have assumed m(¢) = 0. We have the

desired contradiction.

SOME REMARKS
1) The theorem is a finite dimensional version of Gehring’s theorem that
the universal Teichmiiller space is the interior of the Schwarzians of

schlicht functions.
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2) At this conference, Thurston announced a proof that m(¢4) = 0, for all
boundary groups of the Teichmiiller space. This result eliminates the
need for our main hypothesis.

3) The second part of the proof may be repeated verbatim to prove the
following statement. Given any holomorphic mapping of the punctured
disc into Teichmiiller space (or equivalently, a holomorphic family of
finite Riemann surfaces over the unit disc), then the puncture (or central
fiber) cannot be filled in by a totally degenerate group whose limit set has

zZero area.

UNIVERSITY OF ILLINOIS
AT URBANA-CHAMPAIGN






PLANE MODELS FOR RIEMANN SURFACES ADMITTING
CERTAIN HALF-CANONICAL LINEAR SERIES, PART I*

Robert D. M. Accola™*

1. Introduction

Let Wp be a Riemann surface of genus p. In considering vanishing
properties of the theta-function at half periods of the Jacobian associated
with Wp, one is led naturally, via Riemann’s vanishing theorem, to half-
canonical linear series on Wp , that is, to linear series whose doubles
are canonical. A theorem of Castelnuovo assures us that a half-canonical
grp_1 must be composite if p < 3r, and this leads directly to the exis-
tence of automorphism of period two on Wp [2, Part III]. In this paper we
are concerned with surfaces where p = 3r and Wp admits a simple grp_1
(which must necessarily be half-canonical). We show that such surfaces
exist for all r and we investigate the consequences. By another theorem
of Castelnuovo it follows that, except for r = 5, the existence of a simple
grp_l on W3r insures the existence of a g14 without fixed points. This
in turn implies that such a Riemann surface has a plane model where the
half-canonical grsr_1 is easily seen. From these models one easjly cal-
culates the dimension of such Riemann surfaces in Teichmiiller space.
The methods developed here also allow us to characterize, for such sur-
faces, when the divisors of the g14 are the orbits of an automorphism

group which is non-cyclic of order four.

E :
The author wishes to express his thanks to Dr. Joseph Harris for valuable
discussions concerning the material of this paper.

*% ; .
Research supported by the National Science Foundation
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8 ROBERT D. M. ACCOLA

It turns out that these methods also apply to Wy ,’s admitting two

simple half-canonical gr3H1 s and to W ’s admitting four simple

3r+3
half-canonical gr3r+2’s whose sum is bicanonical. We shall consider

these cases in Part II of this paper.

2. Notation, definitions, and preliminary results

A compact Riemann surface of genus p will be denoted Wp‘ A linear
series on Wp of dimension r and degree n will be denoted grn. Such a
series may have fixed points, may be simple or composite, and may be
complete or incomplete. For x ¢ Wp , grn — x will denote the linear series
of degree n—1 of divisors of grn passing through X, not counting x.
If x is not a fixed point of gn, then gn~x =g n =

For the convenience of the reader we include the following definitions
[6, p. 257]. A linear series gr: will be defined to be simple if for a gen-
eral choice of x, grn — x 1is without fixed points. In this situation it is
known that for a general choice of x, grn — x will also be simple. A
linear series gl: will be defined to be composite if for any choice of X,
grn - x has fixed points. In this latter situation Wp is a t-sheeted cover-

ing of a surface of genus q, W., and a divisor of non-fixed points of gr

is a union of the fibers of the mc(ilp b W - W In such a case W admits
a gf (n—fy/t where f is the degree of the d1v1sor of fixed points of gn ;
and for x not fixed for grl i gn —-x has t-1 additional fixed points,
the other points in the fiber of ¢ containing x. If grn is complete on
Wp, then so is gr(n—f)/t on Wq.

If g' is a linear series, a second series g5, is said to impose t

(linear) conditions on grn if there is a linear series gr_tn_m so that

A S
grn = gsm + g n-m"

This means that if D is any divisor of gsm of m distinct points, then

there are t points of D,xl,xz, *++,X¢ so that

B — (Xy+Xy+ - +%y) = g n— +D - (x;+00 4%

*Without fixed points.
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has D - (%, + ---+xt) among its fixed points. Also Xy, Xy, " Ky impose
independent conditions; that is, for each k there is a divisor in grn con-
taining all the X, i= 1,2,---,k-1, k+1,--,t, but not containing Xy -
1 " r r 1
If g m imposes one condition on By o then By = T8 5 =+ Dn—rm

where D, . is the divisor of fixed points of the composite grn; for

m
whenever a divisor of grn contains a point x, it must contain all of the
unique divisor of glm containing x.

We will use the classical fact that since a gln (n<p) without fixed
points imposes n-1 conditions on the canonical series, it imposes at
most n-1 conditions on any special linear series. The extension of this
is that a simple special gsm without fixed points will impose at most
m-s conditions on any other special linear series whose dimension is at
least m-s.

If grn is simple (r>2) and without fixed points, then Wp can be
realized as a curve in P' and the hyperplane sections cut out the divisors
of grn. In such cases we will say that grn has a k-fold singularity if
the curve in P' does. In case gzn is simple and without fixed points,

W, admits a plane model of degree n. If d represents the number of

P
double points suitably counted, then

p:&l%ﬂ_—@_d_

To compute the dimension R of all plane curves of degree n with s

given ordinary singularities of multiplicities kl’ k2, - kS , we use the
formula
s (ka1
R > n(n+3) _2 kJ(kJJr )
- 2 2
j=1

Often, this formula is precise. A singularity of multiplicity k will be
called a k-fold point of the curve or linear series.

A surface will be called g-hyperelliptic (q>0) if it is a two-sheeted
cover of a surface of genus q’< q. Thus rational and elliptic surfaces are

q-hyperelliptic for all q.



