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Preface

Progress in system theory over the last two decades can be broadly categor%zed

into two main streams:

(1) Algebraic System Theory - Study of basic notions and fundamental concepts

“of both algebra and system theoEy.

(2) System Analysis and Design Methods - Study of potential design techniques
to analyze the characteristics of systems and to design controllers for
satisfying various gpecifications and performance criteria.

Thousands of papers have been publishsd in both areas in the last two decades.

Systemic presentations in book form can be foun@, for example, in [}-5]) for the

former, in [6-10] for the 1latter, and in [11-16] for botﬁ. From thig

literature, we find that many elegant theories still cannot be employed to
& ’ )

analggéiﬂesign the physical systems with ease. In other words, work is still

needed ;o f£ill the gap between algebraic system theory and practical system

analysis/desigﬁ techniques. - This provides the main motivation for our
monograph.

The development of our ;ork is based upon state-spaée representations and matrix

fraction descriptions as the mathematical models for physical systems. A

unified approach characterizing the dynamics of a system is presented through

the fo slatiuvn of the characgeristic A-matrix (also known as the matrix
polynomial) of "~ the system. Applications in pole assignment design, modal
control design for multivariable systems, parallel realizations, and ca:cade

realizations of multiport networks are illustrated. A detailed guide to the .

content of the monograph is provided in the last section of Chapter I.
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CHAPTER I INTRODUCTION
~
In this introductory chapter, state-space representations and matrix
fraction descriptions of multivariable linear systems are reviewed ian Section
1.1. Some basic definitions on A-matrices, which are the main mathematical
tools used in our work, are -sumarized in Section 1.2: and Section 1.3 gives 2

guide to the content of the monograph.

1.1 State-Space Representaticns and eaMatrix Fraction Descriptions of

Muliivsriable Systems

An m-input, p-output linear time-invariant system O can be described by

state equations as follows:

ity = AX(t) + Bu(t) : (1.1a)

v{t) = CX(t) + Du(t) ) { L1803

whera x(r.)anC“, y(t)eVSCP, u(t)EUSCm are state, output, and input. vectors

respectively; X, Y, U are state, output and input spaces' of O, respectively;

A,B,C,D are matrices of apprc;priate dimensions. For continuous-time systems, A

is a d.ifferential operator and teR, while for discrete-time systems, ) is a
forward shift operator anﬁ tel

Equations (l.la) and (1l.1b) are referred to as the state-space

repr:sentation of the multivariable system o. A,B,C, and D can be treated as

linear maps:

System map A: X+X
Input map B: U+X
Output map C: . X+VY N

Forward map D: U+Y (1.2)



From Eq. (1.2), O can be described by the following diagram:
X

nl

u

which is not commutative.

(1.3)

A
—_—
S .

< — X
0

The diagram in Eq. (1.3) is useful in studying the structural aspects of
the system O. v
From Eq. (1.1), the input-output relationship of the system O can be

represented as

y(t) = G(X)u(t) (1.4a)

where

1 (1.4b)

G(A) = c(un-a)' B+D eCP™(\)

In Eq. (1.4b) CP*™()A) denotes the set of pxm matrices with elements being
rational functions of A over the complex field C. G(A) is called the transfer
function matrix of the system 0. It has been shown in [1,13] that G(X) can be
represented as the "ratio" of two matrix polynomials:

G(X) = D (N, (N) (1.5a)

N -1 (1.5b)
Nt(X)Dr )

where D (M)eCPPIAl, N (M), N (Me®TAl, D (V™ Al; CPPIAl, CPA] and

C™™[)] are sets of matrix polynomials of A with coefficients in (P*P, CP® and

mxm

¢, respectively. Combining Eqs. (1.4) and (1.5), yields



y(8) = 0 OON, (Wu(e) (1.62)

g -1 (1.6b)
= ur(x)nr (A)U(§)

Equations (l.6a) and (1.6b) are referred to as left matrix fraction descriptions

(LMFD) and right matrix fraction descriptions (RMFD) of the system g,

respectively.

nxn

Let TeC be a nonsingular matrix, and from Eq. (1l.1) define

A= TAT'I, B=TB, C= cr'l, D=0D (1.7a)
and
X(t) = TX(t) (1.7b)
Then the state equations for the system O are as follows:
AX(t) = AX(t)+Bu(t) (1.8a)
(1.8b)

y(£) = CX(t)+Dult)

For the same set of inputs u(t), o in Eq. (1.1) and o in Eq. (1.8) will generate

the same set of outputs y(t) for t20 if X(0) = TX(0). The difference between

the state vectors X(t) and X(t) in the system O and O, respectively, is

therefore not apparent if only the input-output relationships are considered.
~

Thus, we say that O and ‘0 are equivalent systems. Formally, we have the

following definition:

Definition 1.1 The system in Eq. (1.1) and the system in Eq. (1.8) are

equivalent if and only if the states are related by:

;(:) = TX(t)
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We will call this equivalence relation similarity equivalence (SE). (a]

Let Ug(x)eCPxP[A], and det UQ(A) = Kl which is a nonzero constant (i.e.

UE(A) is unimodular). Define

" ) (1.9a)
DL(A) UL(X)DL(X) g
N.(L) = (1.9b)
NL(X) Uz(l)ﬂz(k)
ool
and
R~ T (1.9¢)
G(A) = Dy (NN ()
which is an LMFD of a system ;:
(1.10)

y(t) = G(A)u(t)
From Eqs. (l.6a) and (1.10), O in Eg. (l.6a) and 0 in Eq. {1.10) will generate
the same set of y(t) for t20 if the same set of u(t) is used as inputs, and ©
and O both have the same set of initial conditions y(t), t<0. Thus, we say that

O and O are equivalent systems. Similar reasoning can be applied for RMFDs. We

reach the following definitions:

Definition 1.2 Two systems with LMFDs G(A) = DEI(X)NE(X) and G(A) =

Dl_lfx)Nl(k) are equivalent if and only if

Dy(A) = Uy (NIDy(A)

.and

Nz(k) = uz(k)nz(x)



where Uz(k) is unimodular. Similarly, two systems with RMFDs G(A) = Nr(X)D;l(X)

and G(1) = Nr(A)D;l(X) are equivalent if and only if

D_(A) = Dr(A)Ur(A)

1

and

NQA) = N (MU _(X)

where Ut(x) is unimodular. We will call this kind of equivalence relations

unimodular equivalence (UE). ' (m]

It can easily be verified that both SE and UE satisfy the basic properties
of an equivalence relation: transitivity, symmetry and reflexivity [13]. Since

a system can be represented via state-space equations or matrix fraction

descriptions, we have:
Lemma 1.1 Denote SE or UE by Oys oy and o, are systems. Then, we have

(1) Transitivity: O Oy and Oy o, implies o, ~0,-

.

(2) Symmetry: Oy oy implies ay -
(3) Reflexivity: o, = O,- =

From the idea of equivalent systems, both state-space representations and
matrix fraction descriptions of multivariable systems are non-unique. In
Chapter II, we will develop canonical forms, which are unique for a given

system, for both state-space representations and matrix fraction descriptions.

1.2 Fundamental Properties of A-Matrices

Since the MFD representations of a MIMO (multi-input, multi-out;ut) system
involve the ratio of two A-matrices, and the results presented in the following

chapters are closely related to A-matrices, it is appropriate to review some



definitions of A-matrices in this section. Further details and properties can
be found, for example, in [2] and [3]. Specifically we can define A-matrices
as follows [17,18]. Let F be an arbitrary field, and F[A] be the ring of
polynomials over the field F. A A-matrix, denoted by A(X)erxm[X] is a pxm

matrix whose elements are in F[A]. Let Aij(l) be the (i,j)th element of A(X),

then
A = (A;.(\), 1lsisp, Isism (1.11a)
and
Ko
ij k..-k
1.11b)
A..(\) 4 Z a.. A, a. . eF (
ij k=0 1jk ijk
where kij is the degree of the polynomial Aij(X).
let r = Max(kij, 1i<p, 1l<j<m), then A(A) can be written as
3 r-k (1.12a)
AQ) = ] A shed
k=0
pxm o ; .
where AkcF , and the (i, j)th element of Ak is given by
(a) ,{"ijk K ke ¢ (1.12b)
= 0 otherwise

A A-matrix A(\)eFP*P[A] is said to be nonsingular if det(A(A)) z 0, and
regular if the matrix coefficient Ao of the highest degree term (referred to Eq.
(1.12a)) is nomsingular. A regular A-matrix is monic if Ao is an identity

matrix.

Let A()) be given by Eq. (l.11), and define

v, = Max(kij, 1<jsm), 1sigp (1.13)



Then, v, denoted by v, = 3_ (A())), is the row degree [12] of the ith row of
1

A()). Similarly

Kj = Max(kij, 1<igp), 1lgj<m

denoted by gj = ac (A(A)), is the column degree [12] of the jth column of A()).
j
Define

A'hr - ((Ahr)l_])’ lgigp, lgigm (1.15a)
where '
8i50: F %yt
' i (1.15b)
(i3 {
0 lf lj < \)i

Then Ahr is called the leading row matrix of A()). A()) called is a row-reduced

A-matrix if p=m and Ahr is nonsingular [12]. Similarly, defining ¢

. . .1
Ape = (A, );5)) 1sisp, 1gism (1.16a)
where
.. if k.. = k.
alJKj B SIS (1.16b)
(B etys =
0 if k.. < k. c
ij = %j

then Ahc is called the leading column matrix of A()), and if p=m and Ahc is

nonsingular, A()) is a column-reduced )-matrix [12].
To analyze the structure of )-matrices, it 1is convenient to transform a

general )\-matrix to certain specific forms whose structures can be easily

handled. The most commonly used transformations are those of equivalence

[12,13].
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Definition 1.3 Two X matrices Al()') and AZ(X) are row equivalent, column

equivalent, or equivalent, iff AI(X) = UL(X)AZ(A), A‘l()‘) = Az(X)UR(X), or Al(k)'
= UL(X)AZ().)UR(A), rcspectively, where .UL(X) and UR(A) are unimodular A-
matrices. o

The equivalence of nonsingular A-matrices can be stated as follows:

Lemma 1.2 Any nonsingular A-matrix is row equivalent, column equivalent, or
equivalent to a row-reduced, a column-reduced, or a row- and column-reduced A-
matrix. ' ]

It is well known that equivalent row-reduced or column-reduced A-matrices
of a given nonsingular A-matrix [12] are not unique. Ac:ording to Definition
1.3, a regular A-matrix is always equivalent to a monic A-matrix, and the
properties and applications of monic A-matrices have been discussed by many
authors [17-32]. We shall extend some known results on monic A-matrices to row-
reduced or column-reduced A-matrices in the following chapters.

In the analysis and design of multi-input, multi-output (M140, systems, MFD
representations of the systems are rat.ional matrices over the cowplex field C.
Therefore, we will set F = C in the following chapters wheneve: A-matrices are

involved.

1.3 Organization of Chapters

The material in this monograph can be regarded as being in two parts: The
first part, which includes Chapters II, III and IV, is devoted to exploring the
spectral decomposition theory of A-matrices via the canonical structures of MIMO
systems represented in state space equations and MFDs; the second part, which
consists of Chapters V and VI, considers applications of the structure theory
‘developed in the first -part to the design and decomposition of MIMO systems.
Illustrative numerical examples are presented throughout the book.

In Chapter II, the characteristic A-matrices of multivariable control
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systems are defined. For a reachable system the characteristic )\-matrix can be
constructed from the coefficients of the dependence equations for the coluan
vectors of the reachability test matrix; on the other hand, for an observable
.system, the 1left characteristic ) -matrix can be constructed ' from the
coefficients of the dependence equations for the row vectors of the
observability test matrix. The controller and observer canonical state-space
representations for reachable and observable MIMO systems, respectively, are
L

formally defined. The canonical RMFDs and LMFDs for reachable and observable
systems, respectively, are defined, and their properties are discussed based on
the canonical controller and observer sta'te-space representations. The
characteristic ) -matrices, the canonical state-space forms, and the canonical
MFDs are highly dependent on the Kronecker or observability indices of the
system, Thus, we als§ present a aumerical method using an orthogonalized
projection scheme to -compute the Kronecker and observability indices of MIMO
system. This numerical algorithm is based oﬁ the so-called minimal nice
selections.

Spectral analysis of general nonsingular ) -matrices is presented in Chapter
III. Firstly, column—reduced.and row-reduced canonical ) -matrices are defined;
then the equivalent transformations of a nonsingular ) -matrices to a column-
raduced or a row-reduced canonical x—m;atrix are established. Consequently, the
latent roots and latent structures of a general nonsingular )-matrix can be
studied in terms of its equivalent column-reduced or row-reduced canonical )\-
matrix. The relationships betweenv the latent sfructures of nonsingular \-
na.l:rices and the eigenstructures of the system maps in their associated state-
space minimal realization quadruples are investigated. 'As a result, the Jordan
chains of nonsingular \-matrices can be easily found from the input land output
maps of their associat‘ed Jordan canonical minimal realization quadruples. The
matrix roots, formally called solvents, of nonsingular \-matrices are defined

and briefly discussed. ®
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Chapter 1V is devoted to developing the theory of divisors and spectral
factors of nonsingular ) -matrices. The state-space structures of canomnical left
and right divisors of nonsingular A-matrices are extensively investigated via
the so-called gecvmetric approaches. Constructive proofs on the existence of the
canonical divisors are provided, and some properties of left/right divisors of
nonsingular ) -matrices are investigated. Also, the concepts of complete sets of
canonical left/right divisors, which are extremely important in the applications
to the design. and decomposition of MIMO systems, are presented. For
completeness, the structures of spectrial factorizations wused to factor a
nonsingular \-matrix into the product of lower degree canonical A-matrices are
also explored. Finally, computational algorithms for divisors and spectral
factors based on block triangularization and block diagonalization of square
matrices are discussed. A newly developed matri’x sign algorithm is suggested
for effective computation of divisors and spectral factors of nonsingular A-
matrices. . "y

The appl.catioas of the theory begin in Chapter V, where state-féedback
control cieskgns of multivariable systems are studied. Properties of linear
state-feedback controls are discussed first. The lavariance property of the
Kronecker indices of MIMO systems under linear stratz-feedback controls is an
important guide in Jevising various control schemes. The characterisiic A-
matrix and column-reduced )-matrix assignments for the denominators of the
closed-loop MFDs are derived. A study is then made properties of the :loised-
loop JMFDs. F.‘or' controlling the l&fént structure of the characteristic A-
matrices in the closed-loop system, we introduce the left/right lzarent structure
assignment. For the purposes of closed-loop decomposition, the divisor
‘assignnznt auni decoupling design, via the notions of divisors, are =2l »
presented.

Decompositicn theories zad their applications to multivariable anai;si: and

design ave deveicp-d in Chapter VI. Parallel decomposition theory is & v i



