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PREFACE

This new book deals with control and learning in robotic systems and computers.

In Chapter 1, the authors discuss about the stereo vision and visual motion are two vision
cues that allow three-dimensional (3D) information of a scene to be recovered from multiple
images. When a mobile platform with two fixed camera heads is available to capture stereo
pair of image streams, both cues are applicable. Yet, the cues have complementary
advantages: while feature correspondence is simpler in visual motion, stereo vision offers
more accurate 3D reconstruction. This paper presents an approach of integrating the two cues,
that retains their advantages and removes their disadvantages. It is shown that by adopting the
affine camera model for the projection model of the video cameras, the two sets of motion
correspondences (on the two cameras) are actually related to the stereo correspondences
(across the cameras) by a matrix rank property. The rank property is important, as it allows
the inference from the more readily available motion correspondences to stereo
correspondences that give more accurate 3D reconstruction. In addition, the inference process
could be achieved in a time only linear with respect to the total size of the image data. With
the inferred stereo correspondence, both the 3D structure of the scene as well as the motion of
the mobile platform could be recovered. It is also shown that with the use of all stereo pairs of
image data, not only could reconstruction accuracy be boosted, even errors in the initial
motion correspondences could be detected. Experiments on real image data show that 3D
reconstruction is accurate even with relatively short motion of the mobile platform.

Chapter 2 presents a new method for progressive transmission of 3D images that has four
components: (1) decomposition of the image into regions using Singular Value
Decomposition (SVD), (2) a reconstruction algorithm for progressive rendering that uses
matrix polynomial interpolation along with approximations which are derived from SVD, (3)
exploitation of a matrix norm for analyzing goodness of approximation, and (4) an optimal
adaptive strategy for selecting “the next region to transmit”.

SVD of matrices is used in some areas of image processing, such as restoration, but not
usually in transmission. For an image (matrix) of size m x n, its SVD produces an m x m
matrix, an 7 x n matrix, and a vector of size min {m,n}. That is, the SVD generates more than
double the amount of original data. Despite this fact, however, a design of an appropriate
adaptive transmission strategy within this four-component procedure provides an algorithm,
for lossy progressive transmission, with excellent rendering and computational performance
at low percentages of data transmission.
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Range image registration is a fundamental problem in range image analysis, as outlined
in Chapter 3. The main task for range image registration is to establish point correspondences
between overlapping range images to be registered. Since the relationship between point
correspondences can be represented using motion parameters, in this chapter, we thus review
the main image registration techniques from five aspects: motion representation, motion
estimation, image registration using motion properties, image registration using both motion
and structural properties, and the two-way constraint. In contrast with existing image
registration review techniques, our review starts from the investigation of the relationship
among point correspondences, motion parameters, and rigid constraints. Consequently, the
review not only deepens our understanding about the relationship among motion parameters,
rigid constraints, and point correspondences, but also possibly identifies the potential culprit
for false matches in the process of image registration and points out future research direction
to range image registration.

Given that errors in the estimates for the intrinsic and extrinsic camera parameters are
inevitable, it is important to understand the behaviour of the resultant distortion in depth
recovered under different motion-scene configurations. The main goal of the study in Chapter
4 is to look for a generic motion type that can render depth recovery more robust and reliable.
To this end, lateral and forward motions are compared both under calibrated and uncalibrated
scenarios. For lateral motion, it find that although Euclidean reconstruction is difficult,
ordinal depth information is obtainable; while for forward motion, depth information (even
partial one) is difficult to recover. It obtains the same conclusion in the uncalibrated case
when the intrinsic camera parameters are fixed. However, when these parameters are not
fixed, then lateral motion allows only a local recovery of depth order. In general, the depth
distortion transformation is a Cremona transformation, and becomes a simple projective one
in the case of lateral motion. It applied the above analysis to the scenario of recovering
curvature of a quadric surface under lateral motion and showed that the shape estimates are
recovered with varying degrees of uncertainty depending on the motion-scene configuration.
Specifically, the reconstructed second order shape tends to be more distorted in the direction
parallel to the translational motion than that in the orthogonal direction. It present the result of
a psychophysical experiment, which confirms that in human vision, curvature estimates tend
to be more erroneous and variable along the direction of lateral motion, than along its
orthogonal direction.

Chapter 5 presents a stereo panoramic depth imaging system, which builds depth
panoramas from multiperspective panoramas while using only one standard camera.

The basic system is mosaic-based, which means that we use a single standard rotating
camera and assemble the captured images in a multiperspective panoramic image. Due to a
setoff of the camera’s optical center from the rotational center of the system, we are able to
capture the motion parallax effect, which enables the stereo reconstruction.

The system has been comprehensively analysed. The analyses include the study of
influence of different system parameters on the reconstruction accuracy, constraining the
search space on the epipolar line, meaning of error in estimation of corresponding point,
definition of the maximal reliable depth value, contribution of the vertical reconstruction and
influence of using different cameras. They are substantiated with a number of experiments,
including experiments addressing the baseline, the repeatability of results in different rooms,
by using different cameras, influence of lens distortion presence on the reconstruction
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accuracy and evaluation of different models for estimation of system parameters. The
analyses and the experiments revealed a number of interesting properties of the system.

According to the basic system accuracy we definitely can use the system for autonomous
robot localization and navigation tasks.

As explained in chapter 6, the estimation of 3-D motion and structure is one of the most
important function-alities of an intelligent vision system. In spite of the best efforts of a
generation of computer vision researchers, we still do not have a practical and robust system
for accurately estimating motion and structure from a sequence of moving imagery under all
motion-scene configurations. The authour’s put forth in this study a geometrically motivated
3-D motion and structure error analysis which is capable of shedding light on global effect
such as inherent ambiguities. This is in contrast with the usual statistical kinds of error
analyses which can only deal with local effect such as noise perturbations, and in which much
of the results regarding global ambiguities are empirical in nature. The error expression that
we derive allows us to predict the exact conditions likely to cause ambiguities and how these
ambiguities vary with motion types such as lateral or forward motion. Such an investigation
may alert us to the occurrence of ambiguities under different conditions and be more careful
in picking the solution. Our formulation, though geometrically motivated, was also put to use
in modeling the effect of noise and in revealing the strong influence of feature distribution.
Given the erroneous 3-D motion estimates caused by the inherent ambiguities, it is also
important to understand the impact such motion errors have on the structure reconstruction. In
this study, various robustness issues related to the different types of second order shape
recovered from motion cue are addressed. Experiments on both synthetic and real image
sequences were conducted to verify the various theoretical predictions.

This study would be most beneficial for an intelligent vision system that needs to have an
estimate of the robustness of the 3-D motion and structure information recovered from the
world. Such information would allow the system to carry out its tasks more effectively and to
seek more information if necessary.

Chapter 7 introduces multiple-view geometry for algebraic curves, with applications in
both static and dynamic scenes. More precisely, it shows when and how the epipolar
geometry can be recovered from algebraic curves. For that purpose, it introduce a
generalization of Kruppa’s equations, which express the epipolar constraint for algebraic
curves. For planar curves, it shows that the homography through the plane of the curve in
space can be computed. It investigates the question of three-dimensional reconstruction of an
algebraic curve from two or more views. In the case of two views, it shows that for a generic
situation, there are two solutions for the reconstruction, which allows extracting the right
solution, provided the degree of the curve is greater or equal to 3. When more than two views
are available, it shows that the reconstruction can be done by linear computations, using either
the dual curve or the variety of intersecting lines. In both cases, no curve fitting is necessary
in the image space.

For dynamic scenes, it is addressed the question of recovering the trajectory of a moving
point, also called trajectory triangulation, from moving, non-synchronized cameras. Two
cases are considered. First it address the case where the moving point itself is tracked in the
images. Secondly, it focus on the case where the tangents to the motion are detected in the
images. Both cases yield linear computations, using the dual curve or the variety of
intersecting lines.
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Eventually, it presents several experiments on both synthetic and real data, which
demonstrate that our results can be used in practical situations.

In Chapter 8, a new scheme of vision based navigation was proposed for flying vehicles.
In this navigation scheme, the main navigation tool is a camera, plus an altimeter. The
feasibility of this navigation scheme was carefully studied both from theory and numerical
analysis. Unlike most of vision based navigation approaches in which feature trajectories
were utilised to compute 3D-platform motion, it was used the image geometrical
transformation parameters between consecutive frames to infer 3D displacement of camera.
Due to this change, the navigation process can be conducted even if there is no salient
features that can be extracted from in the image sequence, for example, in the case of flying
over the sea. As a result, the long-range navigation becomes possible by use EO sensor.
Moreover, the way of improvement navigation accuracy was also addressed. The experiment
results demonstrated that the navigation accuracy of this system is compatible to GPS (Global
Positioning system), much higher than all kinds of INS (Inertial Navigation System) in terms
of position estimation. It is a good alternative choice when the GPS signal is not available

In Chapter 9 an evaluation metric for calculate the behavior of a video tracking system is
proposed. This metric is used for adjusting several parameters of the tracking system in order
to improve the performance. The optimization procedure is based on evolutionary
computation techniques. The system has been tested in an airport domain where several
cameras are deployed for surveillance purposes.
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Chapter 1

STRUCTURE AND MOTION RECOVERY
VIA STEREO-MOTION

R. Chung* and P.K. Ho
Computer Vision Laboratory, Department of ACAE
The Chinese University of Hong Kong, Shatin, Hong Kong

Abstract

Stereo vision and visual motion are two vision cues that allow three-dimensional
(3D) information of a scene to be recovered from multiple images. When a mobile
platform with two fixed camera heads is available to capture stereo pair of image
streams, both cues are applicable. Yet, the cues have complementary advantages:
while feature correspondence is simpler in visual motion, stereo vision offers more
accurate 3D reconstruction. This paper presents an approach of integrating the two
cues, that retains their advantages and removes their disadvantages. It is shown that
by adopting the affine camera model for the projection model of the video cameras,
the two sets of motion correspondences (on the two cameras) are actually related to
the stereo correspondences (across the cameras) by a matrix rank property. The rank
property is important, as it allows the inference from the more readily available motion
correspondences to stereo correspondences that give more accurate 3D reconstruction.
In addition, the inference process could be achieved in a time only linear with respect
to the total size of the image data. With the inferred stereo correspondence, both the
3D structure of the scene as well as the motion of the mobile platform could be recov-
ered. It is also shown that with the use of all stereo pairs of image data, not only could
reconstruction accuracy be boosted, even errors in the initial motion correspondences
could be detected. Experiments on real image data show that 3D reconstruction is
accurate even with relatively short motion of the mobile platform.

*E-mail address: rchung@acae.cuhk.edu.hk
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1 Introduction

The capability of recovering 3D structure of a scene from visual data is important for ap-
plications like autonomous navigation and robotic manipulation. If more than one image
of the scene are available the estimation problem is potentially easier because of the more
information available about the imaged scene. There exists two major vision cues that em-
ploy such a multi-ocular approach. One is visual motion, in which 3D structure is recovered
from an image sequence that is acquired under a relative motion between the camera and
the scene. The other is stereo vision, in which 3D structure is recovered from two widely
separated views of the same scene. Both the two multi-ocular cues require to solve two sub-
problems: the correspondence problem, in which image features corresponding to the same
entities in 3D are to be matched across the image frames, and the reconstruction problem,
in which 3D information is to be reconstructed from the feature correspondences.

The motion cue has the advantage that the correspondence problem is relatively easy
to solve, because successive images are alike. However, it generally requires a long image
sequence, up to hundreds of frames (for instance in [19]), for accurate 3D reconstruction.
The reason is, 3D determination from multi-ocular vision is based upon intersecting the
respective images’ corresponding projection rays. To reduce the effect of disturbances like
image noise etc. to the reconstruction, the physical separation between the spatial positions
of the images, i.e., the baseline, must be wide enough.

In contrast, stereo vision has an easier reconstruction problem but a more difficult cor-
respondence problem. It allows more accurate 3D reconstruction because the two views
are generally widely separated. It has a more difficult correspondence problem because for
each feature in one view the search distance for the correspondence in the other view is
generally large, although prior knowledge of the spatial relationship of the two viewpoints
could reduce the originally 2D search to 1D search along the so-called epipolar lines [12].

With the above observations, we outlined in [8] a framework of combining the two
vision cues, in which the affine projection model is used for the cameras. In contrast with
previous work on stereo-motion like [21, 14, 25, 24], the framework emphasizes not on how
to exploit the redundancy in the image data to boost the accuracy in 3D reconstruction, but
on how to couple the two vision cues in a complementary way, so that their advantages are
retained and their disadvantages removed. The framework relates motion correspondences
to stereo correspondences, and allows inference from the former to the latter. Accurate 3D
reconstruction was demonstrated, even with relatively short platform motion.

However, several points are yet to explore. First, only one stereo pair were used for 3D
reconstruction. This is not entirely reasonable, as any stereo pair is as good as the other
in the image data for recovering 3D information. Second, the platform motion was not
recovered. This paper presents how to compute 3D structure and motion from all stereo
pairs of images. It is demonstrated that not only could more accurate reconstruction results
be obtained by using all image data, even false initial motion correspondences could be
detected, and thus establishment of wrong stereo correspondences could be avoided by
comparing the results from different stereo pairs.
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2 Previous Work

Much has been done on stereo vision; good surveys can be found in [4, 10]. Yet due to the
difficulty of its correspndence problem, it hasn’t been widely used in industry and society.

Visual motion has also been well-studied; classical references are listed in [13, 22].
The correspondence problem is much simpler than that in stereo vision, as consecutive
images are alike, which means a feature point could not move too far between consecutive
images. Very good 3D reconstruction results have been obtained, for example in [19]. One
drawback is that a long image sequence is required so as to have a wide enough triangulation
for accurate 3D determination. Such a drawback is not unimportant, as the longer distance
the camera needs to travel, the more probable are the needed assumptions (e.g., a stationary
scene) violated.

Below a few works on motion analysis that are closely related to this work are outlined.

In an elegant work, Tomasi and Kanade [19] proposed a method for reconstructing
3D from an orthographically projected image sequence. It factorizes the image measure-
ments of object points into shape and motion matrices through singular value decomposition
(SVD). Later, Poelman and Kanade [17] extended the factorization method to the case of
paraperspective projection, which produces more accurate results than the original method.
The factorization approach uses a large number of image measurements to counteract the
noise sensitivity of structure-from-motion. However, for accurate reconstruction, a long
image sequence is needed. Extensive computational time is required for processing these
images. Recently, Morita and Kanade [15] presented a sequential approach for the factor-
ization method. The sequential approach is much faster than the original one, but a long
image sequence is still required.

The motion cue under an unknown motion recovers the world only up to a scale factor.
One way to remove this ambiguity is to use two cameras to take stereo pair of image se-
quences and to combine stereo and motion analyses. The redundancy in the image data —
data for both stereo and motion cues — also has the potential of allowing 3D information to
be recovered more accurately. A few studies [21, 14, 25, 1, 24, 16, 7] have looked into this
so-called stereo-motion cue.

However, the focus of the above stereo-motion work was on the exploitation of the input
data’s redundancy in recovering 3D information. How the two vision cues complement each
other and what can be gained by combining them have not been explicitly addressed. The
emphasis of this work, in contrast, is to achieve a system with the following features:

e Itrecovers 3D information accurately even with relatively short image sequences; this
is in principle possible since widely separated views are always in the stereo-motion
data regardless of how short the sequences are.

e It does not require prior knowledge of the camera motion nor the assumption of a
smooth motion; this frees the system from the effect of disturbances and uncertainty
in the camera motion.

e Most importantly, the stereo and motion cues are integrated in a way that they are
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complementary to each other, so that both simple correspondence as well as accurate
reconstruction are possible.

3 Stereo and Motion in Complement

3.1 The Motion Model

In [19] Tomasi and Kanade proposed an elegant discrete model for the motion cue. Below
the model, with some variations to pave the way for further development, is described.

Suppose F image frames observing P points in space are available. Assume an affine
camera. The image position p¢, = (ufp,pr)T of point p (p = 1,2,...,P) in image frame
f(f=1,2,...,F), is related to its 3D position P, = (xp,Yp,2p )T (with reference to the last
image frame: frame F), by

B R [t ][ Py
pfp‘]f[ 0 0 0|1H 1]

— /

M,

where ] is the affine projection matrix (a 2 x 4 matrix), and (Ry,t¢) are the rotational and
translational relationships between image frame f and the last image frame F. By combining
the image positions of all P object points in F image frames, we have

: -~ 0O :
P
-pf‘p — ]f Mf [... lp ]
~~ " IH/_/
W J M

Here W, J, M, S represent the image measurements, the image projection process, the
camera motion, and the scene or the object structure respectively. Each row in W con-
tains the u-coordinates or v-coordinates of image points the same image frame, while each
column contains the observations over the same object point. Since W can be factorized
into matrices involving dimension four, W is of rank at most four (it is exactly four under
general motion and general 3D structure).

3.2 The Stereo-Motion Model

The above motion model has been applied successfully to recover 3D structure [19]. How-
ever, hundreds of frames are needed. If instead a stereo pair of cameras are available to
acquire a stereo pair of image sequences, potentially even with relatively short motion the
3D structure can still be estimated accurately, since widely separated views are always in
the image data.
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The motion model could be extended to the stereo-motion problem in the following way.
Suppose a rigid stereo setup consisting of two cameras: Cameras 1 and 2, are available
to capture image data as the whole setup moves in space relative to a scene. As shown
in Figure 1, let (R,t) be the rotational and translational relationships between the stereo
cameras (which are invariant with the motion of the stereo setup), in the sense that the 3D
coordinates of any point with respect to the two camera coordinates frames (of Cameras 1
and 2 respectively), P and P’, are related by

7] - Al

Figure 1: 3D Structure recovery from stereo-motion.

On applying Tomasi-Kanade’s motion model to the two cameras separately, we have
two image measurement matrices for feature points in the two cameras respectively:

W = JMS
w = JM’'S’

Here W', J’,S’ are matrices analogous to W,J,S, but W’,J’,S’ are with respect to the
second camera.
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Suppose stereo correspondences are established correctly across the two image se-
quences. This means feature points in W’ and S’ can be listed in the same left-to-right
order of those in W and S. If columns of W’ and S’ are so listed and W' is stacked beneath
W, a new image measurement matrix is obtained for the stereo-motion data:

wl [ JMs | [ JMS
C 2 I NV ] - [ J'MMS }
S i
%Y
[0 [
= ([OIJ,HM]M)S (1)
J M

where M is a 4F x 4F matrix representing the stereo camera geometry :

_ - _ O
M = M

O

The matrices W and J are analogues of W and J (which are for single-camera motion) in
stereo-motion. The matrix W (size: 4F x P) represents the image measurements from the
stereo cameras with the stereo correspondences correctly established, and J (size: 4F x 8F)
represents the image projection parameters of the stereo cameras. M, a term not present
in the original motion model, is a 8F x 4F matrix representing the geometry of the stereo
camera setup. Notice that although here we have a stereo pair of cameras not one camera,
the 3D structure term S, like the counterpart in the motion model, is with reference to the
camera coordinate frame of Camera 1 over the last image frame (i.e., Image F).

Since the factorization in Equation (1) involves matrices with dimension four, W in
stereo-motion, like W or W' in single-camera motion, is of rank at most four and in general
four (under general 3D structure and motion). Such a property is unlikely to be satisfied
accidentally, as W is 4F x P large; it is however satisfied when W is constructed under fully
correct stereo matching. As will be discussed in the next section, the property allows stereo
correspondences to be inferred from motion correspondences which are easier to obtain.

3.3 Inferring Stereo Correspondences from Motion Correspondences

Our stereo-motion system proceeds in the following way. A rigid stereo rig of cameras
is constructed, and it undergoes a motion during which F pairs of images are taken from
the cameras. Distinct feature points are then extracted independently from the two image
sequences, and tracked in the two sequences separately.

We assume most of the estimated motion correspondences are correct since the image
frames are dense and thus adjacent images are very much alike (however, we do allow
mistakes in the motion correspondences, which are to be addressed in Section 3.6). With
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such motion correspondences the image measurement matrices W* and W’* for the two
image sequences can be constructed. W* and W’" are in the same form as W and W/,
except that their columns are not necessarily properly ordered, i.e., stereo correspondences
are not established yet. They may also have different number of columns, as feature points
observable in one image sequence may not be observable in the other.

Our idea is to transfer the motion correspondences, which are easier to obtain, to stereo
correspondences, which allows more accurate 3D reconstruction. Establishing stereo cor-
respondences across the two images sequences is equivalent to matching columns of W*
with columns of W’*, so as to have matched pairs of columns to form the matrix W in
Equation (1).

As W is of rank four, its column space is only a 4D subspace in a (4F)-dimension vector
space, and all columns in W are linear combinations of 4 independent vectors. Suppose four
basis vectors of W are available as by, b, b3, by, and let B be [b;, by, b3, bs]. Since W and
W/’ are sub-matrices of W and of rank 4, the upper and lower sub-matrices of B — By
and By (size: 2F x 4) — are also matrices consisting of basis vectors for W and W’
respectively.

Take any column in W, which has hyy as its upper sub-column and hyy- as its lower sub-
column. hyy represents a column of W that corresponds to the motion correspondence of a
feature point in Image Sequence 1, and hy, represents a column of W' that corresponds to
the motion correspondence of the same feature point in Image Sequence 2. If there is a way
to predict hyy for every hyy, the problem of inferring stereo correspondences is essentially
solved.

It turns out if Basis B of W is available (and thus Basis Byy of W and Basis Byy+ of W’
as well), hy,» of W’ could indeed be predicted for every hyy of W as:

hw' = Bw:(BL,Bw) 'BY, hw 2)

Derivation of the above formula is simply based upon the fact that the set of linear com-
bination coefficients that generate [hT ,hT ,]T from Basis B also generate hy, from Basis
B, and hyy/ from Basis By as well.

In other words, given any column of W*, the corresponding column in W' can be pre-
dicted, provided that the basis vectors of W are known. The basis vectors can be formed if
four linearly independent columns of ‘W are available, which are equivalent to a minimum
of four features matched across any stereo pair in the image data. Such initial correspon-
dences may be obtained by epipolar constraint of stereo cameras. If more than 4 matches
are available, a more accurate basis can be determine by the SVD technique [19].

Thus, the stereo-motion framework could use Equation (2) for inferring stereo corre-
spondences from motion correspondences. With noise, the estimated column hyys may not
be exactly that in W’*, but should be quite close to it. A column is then selected from W'"
that has least-squares-error with it. This way stereo correspondences can be fully estab-
lished, and W* and W’” can be organized to form W and W' and also W. An input-output
description of the inference mechanism is summarized in Figures 2.

Notice that once B is known, for each feature point whose motion correspondence in



