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Preface

This volume is made up of the weekly Organic Highlights published online (http://www.
organic-chemistry.org) in 2012 and 2013 and arranged by topic. These columns are still
available online, with active links to the journal articles cited. This volume also includes
a cumulated subject/transformation index for all five volumes in this series, going back to
2003. The leading references in these volumes together provide a thorough and easily used
guide to modern organic synthesis.

This project originated with a discussion of the challenge of updating the class ref-
erence work Comprehensive Organic Transformations: A Guide to Functional Group
Preparations by Richard C. Larock (2nd. edition; Wiley-VCH, 1999). Our objective was to
provide immediate awareness of important new developments in organic synthesis, and at
the same time to develop a readily accessible reference work. We were able to go far beyond
functional group transformation, adding ring construction and control of relative and abso-
lute configuration. The popularity of both the website (3500 subscribers worldwide) and of
the previous volumes in this series attests to the success of this approach.

I often consult these volumes myself in my day-to-day work of teaching and research.
These five volumes together (and the later biennial volumes that will follow) are a valuable
resource that should be on the bookshelf of every practicing organic synthesis chemist.

Douglass F. Taber

Philadelphia, PA
March s, 2014
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1. Functional Group Transformations

Douglass F. Taber
May 14, 2012

MARK GANDELMAN OF the Technion—Israel Institute of Technology devised (4dv. Synth. Catal.
2011, 353, 1438) a protocol for the decarboxylative conversion of an acid 1 to the iodide 3.
Doug E. Frantz of the University of Texas, San Antonio effected (Angew. Chem. Int. Ed. 2011,
50, 6128) conversion of a B-keto ester 4 to the diene 5 by way of the vinyl triflate.

., N 2O
\f CO,Et CO,Et
COMH ¢ 5 ! 1.76,0 Z
P
hv 2. Pd cat 5

OH  Rucat o Au cat
\ CH3OH/H,0
6 7

Pei Nian Liu of the East China University of Science and Technology and Chak Po
Lau of the Hong Kong Polytechnic University (Adv. Synth. Catal. 2011, 353, 275) and
Robert G. Bergman and Kenneth N. Raymond of the University of California, Berkeley (J.
Am. Chem. Soc. 2011, 133, 11964) described new Ru catalysts for the isomerization of an
allylic alcohol 6 to the ketone 7. Xiaodong Shi of West Virginia University optimized (4dv.
Synth. Catal. 2011, 353, 2584) a gold catalyst for the rearrangement of a propargylic ester
8 to the enone 9.

Xue-Yuan Liu of Lanzhou University used (4dv. Synth. Catal. 2011, 353, 3157) a Cu
catalyst to add the chloramine 11 to the alkyne 10 to give 12. Kasi Pitchumani of Madurai
Kamaraj University converted (Org. Lett. 2011, /3, 5728) the alkyne 13 into the a-amino
amide 15 by reaction with the nitrone 14.

Arﬁ Ar
Tssy~ clTs @ Phoy—
" CI . ,1‘\ h’14 0® N SO,Ph
Cu cat PhSO,N3 O
12 Cu cat 15
O \
i-Pr3SiH Sii-Pr.
Pt cat N ’ | Ag cat l
S TIPS OTIPS OTIPS



FuncTioNAL GROUP TRANSFORMATIONS

Katsuhiko Tomooka of Kyushu University effected (/. Am. Chem. Soc. 2011, 133,
20712) hydrosilylation of the propargylic ether 16 to the alcohol 17. Matthew J. Cook of
Queen’s University Belfast (Chem. Commun. 2011, 47, 11104) and Anna M. Costa and
Jaume Vilarrasa of the Universitat de Barcelona (Org. Lett. 2011, 13, 4934) improved the
conversion of an alkenyl silane 18 to the iodide 19.

Vinay Girijavallabhan of Merck/Kenilworth developed (J. Org. Chem. 2011, 76, 6442) a
Co catalyst for the Markovnikov addition of sulfide to an alkene 20. Hojat Veisi of Payame
Noor University oxidized (Synlett 2011, 2315) the thiol 22 directly to the sulfonyl chlo-
ride 23. Nicholas M. Leonard of Abbott Laboratories prepared (J. Org. Chem. 2011, 76,
9169) the chromatography-stable O-Su ester 25 from the corresponding acid 24. Diego
J. Ramon of the Universidad de Alicante coupled (J. Org. Chem. 2011, 76, 5547) the alco-
hol 26 with a sulfonamide to give the protected amine 27.

PhSO,SPh NCS/H,0 <O
Co cat (j\ t-BugNCl ©/;I’ o

23
o
0 .0
OH TFAANHS ArSO,NH, R
A
N pyndlne Ru cat H
H" “Cbz 27

Whereas short (up to about 40) oligopeptides are readily prepared by bead-based syn-
thesis, longer oligopeptides and proteins are prepared by convergent coupling of the oli-
gopeptides so prepared using thioester-based native chemical ligation. Some C-terminal
amino acids, however, including proline, do not work well. Thomas Durek of the University
of Queensland showed (4ngew. Chem. Int. Ed. 2011, 50, 12042) that the selenyl ester 29
participated more efficiently.

o}

HzN HoN,, _FRANK
N
}0 H L Frank
Q«OH 1. NaHSe [—Hse 30 gy {L
N —_—

A O 20 /1% ) PhSeH o) SH

o
I\)LNH LYAR” 0 LYAR

28 2 29

=z
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2. Functional Group Interconversion

Tristan H. Lambert
October 22, 2012

CHAOZHONG LI OF the Shanghai Institute of Organic Chemistry reported (J. Am. Chem.
Soc. 2012, 134, 10401) the silver nitrate catalyzed decarboxylative fluorination of car-
boxylic acids, which shows interesting chemoselectivity in substrates such as 1. A related
decarboxylative chlorination was also reported by Li (J. Am. Chem. Soc. 2012, 134, 4258).
Masahito Ochiai at the University of Tokushima has developed (Chem. Commun. 2012,
48, 982) an iodobenzene-catalyzed Hofmann rearrangement (e.g., 3 to 4) that proceeds via
hypervalent iodine intermediates.

The dehydrating agent T3P (propylphosphonic anhydride), an increasingly popu-
lar reagent for acylation chemistry, has been used (7Tetrahedron Lett. 2012, 53, 1406) by
Vommina Sureshbabu at Bangalore University to convert amino or peptide acids such
as 5 to the corresponding thioacids with sodium sulfide. Jianging Li and co-workers at
Bristol-Myers Squibb have shown (Org. Lett. 2012, 14, 214) that trimethylaluminum,
which has long been known to effect the direct amidation of esters, can also achieve the
direct coupling of acids and amines, such as in the preparation of amide 8.

catalytic catalytlc

_AINO; NH,
/I Selectﬂuor mCPBA O
COzH co HBF,
Bn
H T3P, EtgN A'Mea /C(
PGNHJ\H/N\.)J\O PGNHJ\n/ \)J\SH o
= Na S NBn

6

The propensity of severely hindered 2,2,6,6-tetramethylpiperidine (TMP) amides such
as 9 to undergo solvolysis at room temperature has been shown (4ngew. Chem. Int. Ed.
2012, 51, 548) by Guy Lloyd-Jones and Kevin Booker-Milburn at the University of Bristol.
The reaction proceeds by way of the ketene and is enabled by sterically induced destabiliza-
tion of the usual conformation that allows conjugation of the nitrogen lone pair with the
carbonyl. Matthias Beller at Universitdt Rostock has found (4Angew. Chem. Int. Ed. 2012,
51, 3905) that primary amides may be transamidated via copper(Il) catalysis. The condi-
tions are mild enough that an epimerization-prone amide such as 11 undergoes no observ-
able racemization during conversion to amide 13.

O Me Me catalytic o
Cu(OAc)
PhOzS\)J\ siatl PhO,S \)L Ph 2 Ph _Ph-4-Me
THF, 18 °C OMe NH, t—amyl alcohol N
Me ’ 0°C OH H
Me 4 BR 10 11 4- Me-PhNH2 13
>99% ee 12 >99% ee

A photochemical transamidation has been achieved (Chem. Sci. 2012, 3, 405) by
Christian Bochet at the University of Fribourg that utilizes 385-nm light to activate a

4



