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Preface

Riemann-Roch space is a field of functions with applications in algebraic geom-
etry and coding theory. This textbook is focused on theory and on computations that
are relevant to Riemann-Roch spaces. It is noted that for the computation of integral
points on curves, the study of a Riemann-Roch space is necessary (Alvanos et al.,
2011; Poulakis et al., 2000; Poulakis et al., 2002). Besides the computation of integral
points on curves, computation of Riemann-Roch spaces are used for the construction
of Goppa codes (Goppa, 1981; Goppa, 1988), symbolic parametrizations of curves (Van
Hoeij, 1995; Van Hoeij, 1997), integration of algebraic functions (Davenport, 1981) and
a lot more (Hiren et.al, 2005).

Riemann-Roch space arises from the classical Riemann-Roch theorem which com-
putes the dimension of the field of functions with specific zeros and poles

dimD = degD - g+ 1 +i(D).

Here D is a divisor, g is the genus of the function field and i(D) an invariant of the
function field. The inequality

dimD=>degD-g+1

was initially proved by Riemann (1857) and was upgraded to equality by Roch (1865).

The scope of the textbook is not to add original research to the literature but to give
an educational perspective on Riemann-Roch spaces and the computation of algebraic
structures connected to Riemann-Roch theorem. The proofs of theorems that use stiff
techniques are avoided, and proofs with educational value (according to the author’s
opinion) are presented, allowing the reader to follow the book without many difficult
computation. In order to follow the textbook, the reader should be aware of the basic
algebraic structures such as group, ring, prime ideal, maximal ideal, number field,
modules, vector spaces and the basics of linear algebra, matrix theory and polynomial
theory.

The first part of the textbook consists of four chapters where algebraic structures
and some of their properties are analysed. The second part of the textbook consists
of four more chapters where algorithms and examples connected to Riemann-Roch
spaces are presented. Throughout the textbook a variety of examples cover the major-
ity of the cases.

This textbook is a résumé of the author’s work and his research the last 15 years.
Therefore, the author would like to thank all of his colleagues and friends that helped
him in every way during those years. Especially, the author would like to express his
deep gratitude to his beloved wife, K. Roditou, for her comments and her support dur-
ing the writing of this textbook. The author would also like to thank very much the
referees for their corrections and their very thoughtful and useful comments and K.
Chatzinikolaou for his suggestions about the design of the cover. Last but not least,
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This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.



Preface == |X

the author would like to express his ultimate respect to his former supervisor and cur-
rent mathematical mentor prof. D. Poulakis.
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1 Elements of Algebra

In this first chapter we introduce the algebraic structures that will be used in the
following chapters. Definitions are enriched with lots of examples and figures for bet-
ter understanding. We will only deal with commutative rings and number fields and
therefore every reference to a ring or a field implies a commutative ring and a number
field respectively.

1.1 Domains

In this section we investigate some basic properties of domains that are used through-
out the textbook. Starting with the algebraic structure of the commutative ring and
adding properties to it, we establish the algebraic structure of the field.

Definition A commutative ring R is called an integral domain if for any two elements
a,b e R,a-b=0implies thata =0or b = 0.

The definition of integral domain is necessary in order to have a domain where divis-
ibility can occur. As we know the set of n x n invertible matrices, where the identity
element of the ring is the identity matrix and the zero element of the ring is the zero
matrix, form a commutative ring. The product of two matrices A, B might be the zero
matrix while neither of A and B are zero matrices. For instance

o 2] e a)-[o o]

Thus, the ring of n x n diagonal matrices is not an integral domain, even though it is
a commutative ring. All fields, the ring of rational integers Z and all the subrings of
integral domains are integral domains.

Proposition 1.1.1. If R is an integral domain then R[x] is also an integral domain.

Proof. In order to prove that R[x] is an integral domain it is equivalent to prove that
for any two elements

f(x)=anx" +---+a1x+ap, an #0

and
g(X)=bux™ ++--+bix+bo, bm #0

if f(x)g(x) = 0 then f(x) = 0 or g(x) = 0. The product f(x)g(x) is

f)g(x) = anbmx™™ + <+« + (a1bo + aobh1)x + agho = 0.

Thus anbm = 0, which is a contradiction. |
DI © 2014 Paraskevas Alvanos
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Domains = 3

Divisibility in commutative rings give rise to interesting properties for the ele-
ments of those rings. Those properties inspire the following definitions. Let R be an
integral domain. An element u € Ris called unit ifthereisu™' € Rsuchthatu-u™ =1
and is called n-th root of unity if u" = 1 for some n positive integer. The element u™’
is called an invertible element of u. An element r € R is called irreducible if there are
no non-unit elements a, b of R such that a - b = r. An element p € R is called prime if
for any a, b of R such that p|ab, then p|a or p|b. The definition of the prime element
is equivalent to the condition that p is prime if the principal ideal (p) is a prime ideal.
Two elements r; and r; of R are called associates if there is a unit u € R such that
ry = urs.

Proposition 1.1.2. The prime elements of an integral domain are irreducible.

Proof. Let p be a prime element of an integral domain R. Then, forany a, b € R such
that p = ab we have that p|a or p|b. Assume, without loss of generality, that p|a. Then
there is ¢ € R such that a = pc. Hence,

p=ab=p=pch=cb=1= bisaunit
and therefore p is irreducible. O

Definition An integral domain R in which every non-zero element a can be written
uniquely with respect to a unit as a product of irreducible elements of R is called a
unique factorization domain.

This means that if we have an element a of a unique factorization domain R that
can be factorized in two ways, for instance

a=b[{l"'bg"=C;I"'C;,7'

where b; and c; are irreducible elements of R and g; and r; are rational integers, then
necessarily n = m and each irreducible factor b; is equal up to a unit to exactly one
irreducible factor c;. The definition of the unique factorization domain arises from
the generalization of the Fundamental Theorem of Arithmetic which states that every
positive integer except 1 is either a prime or it can be written uniquely as a product of
prime elements. A historical survey of the Fundamental Theorem of Arithmetic can be
found in (Agargiin et al., 2001).

Now, let R be the polynomial ring Z[v/=5] which is the ring that consists of the
elements a + b\/=5 forany a, b € Z. The element 9 € Z[v/~-5] can be written in two
ways. That is

9=3-3=02+V-5)(2-v-5).

Since 3 does not differ from either (2 + v/-5) or (2 - v/-5) by more than a unit, we con-
clude that 9 has two representations with irreducible elements and therefore Z[/-5]
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is not a unique factorization domain. On the other hand the set of the Gaussian in-
tegers Z[v/-1] = Z[i] is a unique factorization domain and the irreducible Gaussian
integers are exactly the rational integer primes which are not a sum of two rational
integers and the elements of the form a + bi such that a? + b? is prime. In addition if
R is a unique factorization domain then so is R[x].

Proposition 1.1.3. Every irreducible element of a unique factorization domain is prime.

Proof. Let r be an irreducible element of the unique factorization domain R. Assume
that rjab forsome a, b € R.Then thereisa c € R suchthat ab = cr. Since R is a unique
factorization domain, a and b can be factorized uniquely into irreducible elements as
follows

ap---anby---bm=cr.

Thus r must be associate to a factor of either a or b. Therefore r|a or r|b which implies
that r is prime. O

Definition An integral domain in which every ideal is principal is called a principal
ideal domain.

This means that every ideal of R can be generated by a single element. If ¢ and b are
elements of the same principal ideal domain then there is a d such that the principal
ideal (d) generated by d is equal to the ideal (a, b) generated by a and b. If a and b
have no common divisors then every element of the R can be represented as ar; + br,
for some r; and r; of R.

Every field K is a principal ideal domain since its trivial ideal (0) is unique and
therefore at the same time maximal. Next we will show that the ring of integers Z and
the polynomial ring K[x] are also principal ideal domains.

Proposition 1.1.4. The ring of integers Z is a principal ideal domain.

Proof. Let I be a non zero ideal of Z and a the smallest positive integer of I. According
to the euclidean division for any element b € I it holds that

b=ma+v

where 0 < v < a. Since b, rra are elements of I it implies that v € I but since v < a and
a is the smallest positive integer of I we deduce that v = 0. Thus, b = a and therefore
I is equal to the principal ideal (a). O

Proposition 1.1.5. For any field K, the polynomial ring K[x] is a principal ideal domain.
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Proof. Let I be a non-zero ideal of K[x] and f(x) an element of I having the minimal
degree of all elements of K[x]. Assume that there is a g(x) € I and that

8(x) = m()f (x) + v(x)

where 0 < degu(x) < degf. Since g(x) and m(x)f(x) are elements of I we deduce
that v(x) is also an element of I. But f(x) is an element of minimum degree and
0 < degu(x) < degf, so v(x) = 0, g(x) = m(x)f(x) and therefore I = (f(x)). O

Examples of domains that are not principal ideal domains are the bivariate ring K[x, y]
and the polynomial ring Z[x]. For example the ideal generated by (x, y) is not a prin-
cipal ideal of K[x, y] and the ideal (x, n) generated by the two elements x and n € Z
where n > 2 is not a principal ideal of Z[x].

Proposition 1.1.6. If R is a principal ideal domain, then every prime ideal of R is max-
imal.

Proof. Assume that (a) is a non-maximal prime ideal of R. Then there is a principal
ideal (b) such that (a) C (b) € R. Thus, a € (b) and there is ¢ € R such that a = bc.
Since b ¢ (a) itimplies that ¢ € (a). Thus thereis d € R such that ¢ = da and therefore

a=bc= a=bda= bd=1.

Hence, 1 belongs to (b) which means that (b) = R. This is a contradiction since we
assumed that (b) C R. O

Proposition 1.1.7. Every principal ideal domain is a unique factorization domain.

Proof. In order to prove that a principal ideal domain R is a unique factorization do-
main it is equivalent to show that every non-unit element a of R has a factorization
into irreducible factors with respect to a unit. Initially assume that none of the fac-
tors of a is irreducible. Let a; € R such that a;|a. Then a, does not have any ir-
reducible factors. Inductively, we can create an infinite sequence of non-irreducible
factors ---a;|a;, a;|a such that

(@) C(a) C(a) C---.

Now, assume that I is generated by a, a, a;, . ... Since R is a principal ideal domain,
thereis a b € R such that

n
b=Zr.~a,~, ri €R, ap = a.
i=0

Thus b € (ay) and (b) C (an). On the other hand we have that

(an) g (a’ ai, aZ’--') =1
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This is a contradiction with the assumption that a was irreducible, and therefore we
have proved that every element a of R has at least one irreducible factor.

Suppose now that a = a;r; where r, is the irreducible factor of a. If a; is a unit
then a is irreducible. If a; is not a unit then there is an irreducible factor r, and some
a, € R such that a; = ayr,. If a, is a unit then a = a,ryr, is a factorization of a into
irreducible factors. This procedure could be continued indefinitely, and therefore a
has an irreducible factor. O

The following theorem is very enlightening since it provide us a sufficient and neces-
sary condition for a unique factorization theorem to be a principal ideal domain

Theorem 1.1.8. A unique factorization domain R is a principal ideal domain if and only
if every prime ideal of R is maximal.

Proof. We will show that if every prime ideal of R is maximal then R is a principal ideal
domain, since the converse is obvious by 1.1.7.
Let I be a non-trivial ideal of R and a, b € R where

a=ai-an

and
b=hby-bm

are the decompositions of a and b respectively into irreducible elements such that
a; # b; for any i and j with respect to the units of R. Since I is prime, at least one factor
from p; and b; belong to I. Without loss of generality suppose that p,, g1 € I. Since
P1, q1 are irreducibles, by 1.1.3 we get that (p;) and (g;) are primes and maximal by
our assumption. This is a contradiction since p; # g, and therefore it holds that

(1) € (p1,q1) CICR

and
(1) € (p1,q1) CICR.

Now let I be the set of non-principal ideals of R and assume that J is not an empty
set. Let
LclcC:--

I=Jay.

If I is a principal ideal (a), then a € I; for some i and therefore I; = (a). This is a con-
tradiction and therefore I € J. By Zorn’s lemma (see (Vereshchagin and Shen, 2002)
or (Komjath and Totik, 2006)), we get that there is I a maximal ideal of J. If I is not a
prime ideal, then there exist a, b € R such that ab € I'and a, b ¢ I. Then

and

1S, a)=(c)



