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Preface

This is a book about real analysis, but it is not an ordinary real analysis
book. Written with the student in mind, this text incorporates pedagogical
techniques not often found in books at this level. The book is intended for
a one-year course in real analysis at the graduate level or the advanced
undergraduate level.

We bring over 50 years of combined teaching, research, and writing
experience to this project. The text material has been class tested several
times and has been used for independent study courses as well.

What Makes This Book Unique

This book contains many features that are unique for a real analysis text.
Here are a few.

Motivation of key concepts. All key concepts are motivated. The im-
portance of and rationale behind ideas such as measurable functions, mea-
surable sets, and Lebesgue integration are made transparent.

Detailed theoretical discussion. Detailed proofs of most results (i.e.,
lemmas, theorems, corollaries, and propositions) are provided. However,
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to fully engage the reader, proofs or parts of proofs are often relegated to
the exercises.

Illustrative examples. Following most definitions and results, one or
more examples are presented that illustrate the concept or result in order
to solidify it in the reader’s mind and provide a concrete frame of reference.
This book contains approximately 200 examples, most of which consist of
several parts. '

Abundant and varied exercises. The text contains over 1200 exercises,
not including parts, far more than other real analysis books. Furthermore,
the exercises vary widely with regard to application and level.

Applications. A diverse collection of applications appears throughout the
text, some as examples and others as entire sections or chapters. For in-
stance, applications to probability theory are ubiquitous. Other applica-
tions include those to Fourier analysis, wavelets, and measurable dynamical
systems.

Careful referencing. As an aid to effective use of the book, we have con-
sistently provided references (including page numbers) to definitions, exam-
ples, exercises, and results. Additionally, we have marked post-referenced
exercises with a star (%); we strongly recommend that all such exercises be
done by the reader.

Biographies. Each chapter begins with a brief biography of a famous
mathematician. Besides being of general interest, these biographies help
the reader obtain a perspective on how real analysis and its applications
have developed.

Organization
The text offers considerable flexibility in the choice of material to cover.

o Chapters 1 and 2 present prerequisite material that may be review for
many but provides a common ground for all readers. At the option of the
instructor, these two chapters can be covered either briefly or in detail;
they can also be assigned to the students for independent reading.

e Chapters 3 and 4 present the elements of measure and integration by
first discussing the Lebesgue theory on the line (Chapter 3) and then
the abstract theory (Chapter 4). This material is prerequisite to all
subsequent chapters.
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e Chapter 5 provides an introduction to the fundamentals of probability
theory, including the mathematical model for probability, random vari-
ables, expectation, and laws of large numbers. Although optional, this
chapter is recommended as it provides a myriad of examples and appli-
cations for other topics.

o In Chapter 6 differentiation is discussed, both of functions and of mea-
sures. Topics examined include differentiability, bounded variation, and
absolute continuity of functions, and a thorough discussion of signed
and complex measures, the Radon-Nikodym theorem, decomposition of
measures, and measurable transformations.

o Chapter 7 provides the fundamentals of topological and metric spaces.
This chapter can be covered relatively quickly when the students have
a background in topology from other courses. In addition to topics tra-
ditionally found in an introduction to topology, a discussion of weak
topologies and function spaces is included.

o Completeness, compactness, and approximation comprise the topics for
Chapter 8. Examined therein are the Baire category theorem, contrac-
tions of complete metric spaces, compactness in function and product
spaces, and the Stone-Weierstrass theorem.

o Presented in Chapter 9 are Hilbert spaces and the.classical Banach
spaces. Among other things, bases and duality in Hilbert space, com-
pleteness and duality of £P-spaces, and duality in spaces of continuous
functions are discussed.

o The basic theory of normed and locally convex spaces is given in Chap-
ter 10. Topics include the Hahn-Banach theorem, linear operators on
Banach spaces, fundamental properties of locally convex spaces, and the
Krein-Milman theorem.

o Chapter 11 provides applications of previous chapters to harmonic anal-
ysis. We examine the elements of Fourier series and transforms and
the £3-theory of the Fourier transform. In addition, an introduction to
wavelets and the wavelet transform is presented.

e Chapter 12 examines measurable dynamical systems. This chapter re-
quires the one on probability (Chapter 5) and discusses ergodic theorems,
isomorphisms of measurable dynamical systems, and entropy.

The flowchart on the next page summarizes the preceding discussion
and depicts the interdependence among chapters. In the flowchart, the
prerequisites for a given chapter consist of all chapters having a path leading
to that chapter.
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Set Theory

In this chapter, we will introduce the fundamentals of set theory. Although
some readers may be familiar with much of the material, we present this
chapter as a way to provide a common ground for all readers of the text.

We will first discuss basic definitions and properties of sets. Next
we will explore relationships between functions and sets, discuss Cartesian
products, and introduce countability. Finally, we will examine algebras,
o-algebras, and monotone classes—special collections of sets that play a
prominent role in analysis and measure theory.

1.1 BASIC DEFINITIONS AND PROPERTIES

A set is a collection of elements. If A is a set and z is an element (member,
point) of A, then we write z € A; £ ¢ A means than z is not an element
of A and, in general, we use “/” to signify negation. The symbol @ denotes
the empty set, a set containing no elements.

Let A and B be sets. If every element of A is an element of B, then
A is said to be a subset of B, denoted A C B or B O A. Two sets, A
and B, are equal if they contain the same elements —in other words, if
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