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Preface to the English
Edition

Und so ist jeder Ubersetzer anzusehen, dass er sich als Vermit-
tler dieses allgemein-geistigen Handels bemiiht und den Wech-
seltausch zu befordern sich zum Geschaft macht. Denn was
man auch von der Unzulinglichkeit des Ubersetzers sagen mag,
so ist und bleibt es doch eines der wichtigsten und wiirdigsten
Geschafte in dem allgemeinen Weltverkehr. (And that is how
we should see the translator, as one who strives to be a mediator
in this universal, intellectual trade and makes it his business to
promote exchange. For whatever one may say about the short-
comings of translations, they are and will remain most impor-
tant and worthy undertakings in world communications.) J. W.
von GOETHE , vol. VI of Kunst und Alterthum, 1828.

This book is a translation of the second edition of Funktionentheorie I,
Grundwissen Mathematik 5, Springer-Verlag 1989. Professor R. B.
BURCKEL did much more that just produce a translation; he discussed
the text carefully with me and made several valuable suggestions for im-
provement. It is my great pleasure to express to him my sincere thanks.

Mrs. Ch. ABIKOFF prepared this TEX-version with great patience; Prof.
W. ABIKOFF was helpful with comments for improvements. Last but not
least I want to thank the staff of Springer-Verlag, New York. The late
W. KAUFMANN-BUHLER started the project in 1984; U. SCHMICKLER-
HIRZEBRUCH brought it to a conclusion.

Lengerich (Westphalia), June 26, 1989

Reinhold Remmert



Preface to the Second
German Edition

Not only have typographical and other errors been corrected and improve-
ments carried out, but some new supplemental material has been inserted.
Thus, e.g., HURWITZ's theorem is now derived as early at 8.5.5 by means
of the minimum principle and Weierstrass's convergence theorem. Newly
added are the long-neglected proof (without use of integrals) of Laurent’s
theorem by SCHEEFFER. via reduction to the Cauchy-Taylor theorem, and
DIXON’s elegant proof of the homology version of Cauchy’s theorem. In re-
sponse to an oft-expressed wish, each individual section has been enriched
with practice exercises.

I have many readers to thank for critical remarks and valuable sug-
gestions. 1 would like to mention specifically the following colleagues:
M. BARNER (Freiburg). R. P. Boas (Evanston, Illinois), R. B. BURCKEL
(Kansas State University). K. DIEDERICH (Wuppertal), D. GAIER (Giessen),
ST. HILDEBRANDT (Bonn), and W. PURKERT (Leipzig).

In the preparation of the 2nd edition, I was given outstanding help by
Mr. K. SCHLOTER and special thanks are due him. I thank Mr. W.
HoOMANN for his assistance in the selection of exercises. The publisher has
been magnanimous in accommodating all my wishes for changes.

Lengerich (Westphalia). April 10, 1989

Reinhold Remmert



Preface to the First
German Edition

Wir mochten gern dem Kritikus gefallen: Nur nicht dem Kiri-
tikus vor allen. (We would gladly please the critic: Only not
the critic above all.) G. E. LESSING.

The authors and editors of the textbook series “Grundwissen Mathematik™!
have set themselves the goal of presenting mathematical theories in con-
nection with their historical development. For function theory with its
abundance of classical theorems such a program is especially attractive.
This may, despite the voluminous literature on function theory, justify yet
another textbook on it. For it is still true, as was written in 1900 in the
prospectus for vol. 112 of the well-known series Ostwald’s Klassiker Der
Ezakten Wissenschaften, where the German translation of Cauchy’s classic
“Mémoire sur les intégrales définies prises entre des limites imaginaires”
appears: “Although modern methods are most effective in communicating
the content of science, prominent and far-sighted people have repeatedly
focused attention on a deficiency which all too often afflicts the scientific ed-
ucation of our younger generation. It is this, the lack of a historical sense
and of any knowledge of the great labors on which the edifice of science
rests.”

The present book contains many historical explanations and original
quotations from the classics. These may entice the reader to at least page
through some of the original works. “Notes about personalities” are sprin-
kled in “in order to lend some human and personal dimension to the sci-
ence” (in the words of F. KLEIN on p. 274 of his Vorlesungen tber die
Entwicklung der Mathematik im 19. Jahrhundert — see [Hg]). But the
book is not a history of function theory; the historical remarks almost
always reflect the contemporary viewpoint.

Mathematics remains the primary concern. What is treated is the ma-
terial of a 4 hour/week, one-semester course of lectures, centering around

1The original German version of this book was volume 5 in that series (translator’s
note).
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viil PREFACE TO THE FIRST GERMAN EDITION

Cauchy’s integral theorem. Besides the usual themes which no text on
function theory can omit, the reader will find here

- RITT’s theorem on asymptotic power series expansions, which pro-
vides a function-theoretic interpretation of the famous theorem of E.
BOREL to the effect that any sequence of complex numbers is the
sequence of derivatives at 0 of some infinitely differentiable function
on the line.

- EISENSTEIN’s striking approach to the circular functions via series of
partial fractions.

- MORDELL’s residue-theoretic calculations of certain Gauss sums.

In addition cognoscent: may here or there discover something new or
long forgotten. _

To many readers the present exposition may seem too detailed, to others
perhaps too compressed. J. KEPLER agonized over this very point, writing
in his Astronomia Nova in the year 1609: “Durissima est hodie conditio
scribendi libros Mathematicos. Nisi enim servaveris genuinam subtilitatem
propositionum, instructionum, demonstrationum, conclusionum; liber non
erit Mathematicus: sin autem servaveris; lectio efficitur morosissima. (It
is very difficult to write mathematics books nowadays. If one doesn’t take
pains with the fine points of theorems, explanations, proofs and corollaries,
then it won't be a mathematics book; but if one does these things, then
the reading of it will be extremely boring.)” And in another place it says:
“Et habet ipsa etiam prolixitas phrasium suam obscuritatem, non minorem
quam concisa brevitas (And detailed exposition can obfuscate no less than
the overly terse).”

K. PETERS (Boston) encouraged me to write this book. An academic
stipend from the Volkswagen Foundation during the Winter semesters
1980/81 and 1982/83 substantially furthered the project; for this support
I'd like to offer special thanks. My thanks are also owed the Mathematical
Research Institute at Oberwolfach for oft-extended hospitality. It isn’t pos-
sible to mention here by name all those who gave me valuable advice during
the writing of the book. But I would like to name Messrs. M. KOECHER
and K. LAMOTKE, who checked the text critically and suggested improve-
ments. From Mr. H. GERICKE I learned quite a bit of history. Still I must
ask the reader’s forebearance and enlightenment if my historical notes need
any revision.

My colleagues, particularly Messrs. P. ULLRICH and M. STEINSIEK, have
helped with indefatigable literature searches and have eliminated many de-
ficiencies from the manuscript. Mr. ULLRICH prepared the symbol, name,
and subject indexes; Mrs. E. KLEINHANS made a careful critical pass
through the final version of the manuscript. I thank the publisher for be-
ing so obliging.

Lengerich (Westphalia), June 22, 1983 Reinhold Remmert



PREFACE TO THE FIRST GERMAN EDITION X

Notes for the Reader. Reading really ought to start with Chapter 1. Chap-
ter 0 is just a short compendium of important concepts and theorems known
to the reader by and large from calculus; only such things as are important
for function theory get mentioned here.

A citation 3.4.2, e.g., means subsection 2 in section 4 of Chapter 3.
Within a given chapter the chapter number is dispensed with and within
a given section the section number is dispensed with, too. Material set in
reduced type will not be used later. The subsections and sections prefaced
with * can be skipped on the first reading. Historical material is as a rule
organized into a special subsection in the same section were the relevant
mathematics was presented.
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