CAMBRIDGE TEXTS
IN APPLIED
MATHEMATICS

An Introduction
to Computational
Stochastic PDEs

GABRIEL J. LORD
CATHERINE E. POWELL
TONY SHARDLOW



AN INTRODUCTION
TO COMPUTATIONAL
STOCHASTIC PDES

GABRIEL J. LORD
Heriot-Watt University, Edinburgh

CATHERINE E. POWELL

University of Manchester

TONY SHARDLOW
University of Bath

BB CAMBRIDGE

,,,,,

%t UNIVERSITY PRESS




CAMBRIDGE

UNIVERSITY PRESS
32 Avenue of the Americas, New York NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9780521899901

© Gabriel J. Lord, Catherine E. Powell and Tony Shardlow 2014

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2014
A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Lord, Gabriel J., author.
An introduction to computational stochastic PDEs / Gabriel J. Lord, Heriot-Watt
University,
Edinburgh, Catherine E. Powell, University of Manchester, Tony Shardlow, University
of Bath.
pages cm — (Cambridge texts in applied mathematics; 50)
Includes bibliographical references and index.
ISBN 978-0-521-89990-1 (hardback) - ISBN ¢78-0-521-72852-2 (paperback)
1. Stochastic partial differential equations. |. Powell, Catherine E., author.
II. Shardlow, Tony, author. IlI. Title.
QA274.25.L67 2014
519.202-dC23 2014005535

ISBN 978-0-521-89990-1 Hardback
ISBN 978-0-521-72852-2 Paperback
Additional resources for this publication at www.cambridge.org/9780521899901
Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.



AN INTRODUCTION TO COMPUTATIONAL
STOCHASTIC PDES

This book gives a comprehensive introduction to numerical methods and anal-
ysis of stochastic processes, random fields and stochastic differential equations,
and offers graduate students and researchers powerful tools for understanding un-
certainty quantification for risk analysis. Coverage includes traditional stochastic
ordinary differential equations with white noise forcing, strong and weak approx-
imation and the multilevel Monte Carlo method. Later chapters apply the theory
of random fields to the numerical solution of elliptic PDEs with correlated random
data, discuss the Monte Carlo method and introduce stochastic Galerkin finite ele-
ment methods. Finally, stochastic parabolic PDEs are developed.

Assuming little previous exposure to probability and statistics, theory is devel-
oped in tandem with state-of-the-art computational methods through worked ex-
amples, exercises, theorems and proofs. The set of MATLAB codes included (and
downloadable) allows readers to perform computations themselves and solve the
test problems discussed. Practical examples are drawn from finance, mathematical
biology, neuroscience, fluid flow modelling and materials science.
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Preface

Techniques for solving many of the differential equations traditionally used by applied
mathematicians to model phenomena such as fluid flow, neural dynamics, electromagnetic
scattering, tumour growth, telecommunications, phase transitions, etc. are now mature.
Parameters within those models (e.g., material properties, boundary conditions, forcing
terms, domain geometries) are often assumed to be known exactly, even when it is clear
that is not the case. In the past, mathematicians were unable to incorporate noise and/or
uncertainty into models because they were constrained both by the lack of computational
resources and the lack of research into stochastic analysis. These are no longer good excuses.
The rapid increase in computing power witnessed in recent decades allows the extra level of
complexity induced by uncertainty to be incorporated into numerical simulations. Moreover,
there are a growing number of researchers working on stochastic partial differential equations
(PDEs) and their results are continually improving our theoretical understanding of the
behaviour of stochastic systems. The transition from working with purely deterministic
systems to working with stochastic systems is understandably daunting for recent graduates
who have majored in applied mathematics. It is perhaps even more so for established
researchers who have not received any training in probability theory and stochastic processes.
We hope this book bridges this gap and will provide training for a new generation of
researchers — that is, you.

This text provides a friendly introduction and practical route into the numerical solution
and analysis of stochastic PDEs. It is suitable for mathematically grounded graduates who
wish to learn about stochastic PDEs and numerical solution methods. The book will also
serve established researchers who wish to incorporate uncertainty into their mathematical
models and seek an introduction to the latest numerical techniques. We assume knowledge
of undergraduate-level mathematics, including some basic analysis and linear algebra, but
provide background material on probability theory and numerical methods for solving
differential equations. Our treatment of model problems includes analysis, appropriate
numerical methods and a discussion of practical implementation. MATLAB is a convenient
computer environment for numerical scientific computing and is used throughout the book
to solve examples that illustrate key concepts. We provide code to implement the algorithms
on model problems, and sample code is available from the authors’ or the publisher’s
website®. Each chapter concludes with exercises, to help the reader study and become more

* http://www.cambridge.org/9780521728522
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familiar with the concepts involved, and a section of notes, which contains pointers and
references to the latest research directions and results.
The book is divided into three parts, as follows.

Part One: Deterministic Differential Equations We start with a deterministic or non-
random outlook and introduce preliminary background material on functional analysis,
numerical analysis, and differential equations. Chapter 1 reviews linear analysis and
introduces Banach and Hilbert spaces, as well as the Fourier transform and other key tools
from Fourier analysis. Chapter 2 treats elliptic PDEs, starting with a two-point boundary-
value problem (BVP), and develops Galerkin approximation and the finite element method.
Chapter 3 develops numerical methods for initial-value problems for ordinary differential
equations (ODEs) and a class of semilinear PDEs that includes reaction—diffusion equations.
We develop finite difference methods and spectral and finite element Galerkin methods.
Chapters 2 and 3 include not only error analysis for selected numerical methods but also
MarLAB implementations for test problems that illustrate numerically the theoretical orders
of convergence.

Part Two: Stochastic Processes and Random Fields Here we turn to probability theory
and develop the theory of stochastic processes (one parameter families of random variables)
and random fields (multi-parameter families of random variables). Stochastic processes and
random fields are used to model the uncertain inputs to the differential equations studied
in Part Three and are also the appropriate way to interpret the corresponding solutions.
Chapter 4 starts with elementary probability theory, including random variables, limit
theorems, and sampling methods. The Monte Carlo method is introduced and applied to
a differential equation with random initial data. Chapters 5-7 then develop theory and
computational methods for stochastic processes and random fields. Specific stochastic
processes discussed include Brownian motion, white noise, the Brownian bridge, and
fractional Brownian motion. In Chapters 6 and 7, we pay particular attention to the important
special classes of stationary processes and isotropic random fields. Simulation methods
are developed, including a quadrature scheme, the turning bands method, and the highly
efficient FFT-based circulant embedding method. The theory of these numerical methods is
developed alongside practical implementations in MATLAB.

Part Three: Stochastic Differential Equations There are many ways to incorporate sto-
chastic effects into differential equations. In the last part of the book, we consider three
classes of stochastic model problems, each of which can be viewed as an extension to a
deterministic model introduced in Part One. These are:

Chapter 8 ODE (3.6) + white noise forcing
Chapter 9 Elliptic BVP (2.1) + correlated random data
Chapter 10 Semilinear PDE (3.39) + space—time noise forcing

Note the progression from models for time ¢ and sample variable w in Chapter 8, to models
for space x and w in Chapter 9, and finally to models for ¢,x,w in Chapter 10. In each
case, we adapt the techniques from Chapters 2 and 3 to show that the problems are well
posed and to develop numerical approximation schemes. MarLaB implementations are also
discussed. Brownian motion is key to developing the time-dependent problems with white
noise forcing considered in Chapters 8 and 10 using the Itd calculus. It is these types
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of differential equations that are traditionally known as stochastic differential equations
(SODEs and SPDEs). In Chapter 9, however, we consider elliptic BVPs with both a forcing
term and coefficients that are represented by random fields not of white noise type. Many
authors prefer to reserve the term ‘stochastic PDE’ only for PDEs forced by white noise. We
interpret it more broadly, however, and the title of this book is intended to incorporate PDEs
with data and/or forcing terms described by both white noise (which is uncorrelated) and
correlated random fields. The analytical tools required to solve these two types of problems
are, of course, very different and we give an overview of the key results.

Chapter 8 introduces the class of stochastic ordinary differential equations (SODEs)
consisting of ODEs with white noise forcing, discusses existence and uniqueness of solutions
in the sense of It6 calculus, and develops the Euler-Maruyama and Milstein approximation
schemes. Strong approximation (of samples of the solution) and weak approximation
(of averages) are discussed, as well as the multilevel Monte Carlo method. Chapter 9
treats elliptic BVPs with correlated random data on two-dimensional spatial domains.
These typically arise in the modelling of fluid flow in porous media. Solutions are also
correlated random fields and, here, do not depend on time. To begin, we consider log-
normal coefficients. After sampling the input data, we study weak solutions to the resulting
deterministic problems and apply the Galerkin finite element method. The Monte Carlo
method is then used to estimate the mean and variance. By approximating the data using
Karhunen—Loe¢ve expansions, the stochastic PDE problem may also be converted to a
deterministic one on a (possibly) high-dimensional parameter space. After setting up an
appropriate weak formulation, the stochastic Galerkin finite element method (SGFEM),
which couples finite elements in physical space with global polynomial approximation on
a parameter space, is developed in detail. Chapter 10 develops stochastic parabolic PDEs,
such as reaction—diffusion equations forced by a space—time Wiener process, and we discuss
(strong) numerical approximation in space and in time. Model problems arising in the fields
of neuroscience and fluid dynamics are included.

The number of questions that can be asked of stochastic PDEs is large. Broadly speaking,
they fall into two categories: forward problems (sampling the solution, determining exit
times, computing moments, etc.) and inverse problems (e.g., fitting a model to a set of
observations). In this book, we focus on forward problems for specific model problems. We
pay particular attention to elliptic PDEs with coefficients given by correlated random fields
and reaction—diffusion equations with white noise forcing. We also focus on methods to
compute individual samples of solutions and to compute moments (means, variances) of
functionals of the solutions. Many other stochastic PDE models are neglected (hyperbolic
problems, random domains, forcing by Levy processes, to name a few) as are many important
questions (exit time problems, long-time simulation, filtering). However, this book covers a
wide range of topics necessary for studying these problems and will leave the reader well
prepared to tackle the latest research on the numerical solution of a wide range of stochastic
PDEs.
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1
Linear Analysis

This chapter introduces theoretical tools for studying stochastic differential equations in
later chapters. §1.1 and §1.2 review Banach and Hilbert spaces, the mathematical structures
given to sets of random variables and the natural home for solutions of differential equations.
§1.3 reviews the theory of linear operators, especially the spectral theory of compact and
symmetric operators, and § 1.4 reviews Fourier analysis.

1.1 Banach spaces C" and LP

Banach and Hilbert spaces are fundamental to the analysis of differential equations and
random processes. This section treats Banach spaces, reviewing first the notions of norm,
convergence, and completeness before giving Definition 1.7 of a Banach space. We assume
readers are familiar with real and complex vector spaces.

Definition 1.1 (norm) A norm ||-|| is a function from a real (respectively, complex) vector
space X to R* such that

(i) |lu|| = 0 if and only if u = 0,
(ii) ||Au|| = |A]|||u| for all u € X and A € R (resp., C), and
(iii) |lu + v|| < |lu|| + ||v]| for all u,v € X (triangle inequality).

A normed vector space (X, ||-||) is a vector space X with a norm ||-||. If only conditions (ii)
and (iii) hold, ||-|| is called a semi-norm and denoted |-| x.

Example 1.2 (R, ]|-||,) is a normed vector space with

) 2 2\ 1/2
llally = (fer]” + - + [al)
for the column vector u = [uy,...,u;]" € R?, where || denotes absolute value. More
generally, ||u||,, = max{|u,|,...,|uy|} and ||z]], = (lu;[P +--- + |ud|”)1/p forp>1lisa

norm and (R, ||-|| p) is a normed vector space. When d = 1, these norms are all equal to the
absolute value.

Definition 1.3 (domain) A domain D is a non-trivial, connected, open subset of R4 and
a domain is bounded if D c {x € R?: ||x||, < R} for some R > 0. The boundary of a
domain is denoted dD and we always assume the boundary is piecewise smooth (e.g., the
boundary of a polygon or a sphere).
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Example 1.4 (continuous functions) For a subset D ¢ R?, let C(D) denote the set of real-
valued continuous functions on D. If D is a domain, functions in C(D) may be unbounded.
However, functions in C(D), where D is the closure of D, are bounded and (C(D), ||-||.,) is
a normed vector space with the supremum norm,

) u € C(D).

llullo = suplutx)
xeD
A norm ||-|| on a vector space X measures the size of elements in X and provides a notion
of convergence: for u,u, € X, we write u = lim,_, ,u, oru, — uasn — oo in (X, ||-||)
if ||u,, — u|]| = 0 as n — oo. For example, the notion of convergence on C(D) is known as
uniform convergence.

Definition 1.5 (uniform and pointwise convergence) We say u, € C(D) converges
uniformly to a limit u if ||u, —ull, = 0 as n — oo. Explicitly, for every € > 0, there
exists N € N such that, forall x € D and alln > N, |u,(x) — u(x)| < €. In uniform
convergence, N depends only on €. This should be contrasted with the notion of pointwise
convergence, which applies to all functions u,,: D — R. We say u,, — u pointwise if, for
every x € D and every € > 0, there exists N € N such that forall n > N, |u, (x)—u(x)| < €.
In pointwise convergence, N may depend both on € and x.

There are many techniques, both computational and analytical, for finding approximate
solutions u, € X to mathematical problems posed on a vector space X. When u,, is a
Cauchy sequence and X is complete, u,, converges to some u € X, the so-called limit
point, and this is often key in showing a mathematical model is well posed and proving the
existence of a solution.

Definition 1.6 (Cauchy sequence, complete) Consider a normed vector space (X, ||-]|). A
sequence u,, € X for n € N is called a Cauchy sequence if, for all € > 0, there exists an
N e N such that

llw, —up|| <€  foralln,m > N.

A normed vector space (X, ||-||) is said to be complete if every Cauchy sequence u,, in X
converges to a limit point # € X. In other words, there exists a u € X such that ||u,, — || — 0
asn — .

Definition 1.7 (Banach space) A Banach space is a complete normed vector space.
Example 1.8 (R, |-|) and (R%,||-|,,) for 1 < p < oo are Banach spaces.

Example 1.9 (C(D),||-||) is a2 Banach space if D is bounded. See Exercise 1.1. If D is
unbounded, the set of bounded continuous functions Cy (D) on D gives a Banach space.

The contraction mapping theorem is used in Chapters 3, 8, and 10 to prove the existence
and uniqueness of solutions to initial-value problems.

Theorem 1.10 (contraction mapping) Let Y be a non-empty closed subset of the Banach
space (X, ||*||). Consider a mapping J: Y — Y such that, for some u € (0,1),

|3z = 3v|| < gl - v, forallu,v €Y. (1.1

There exists a unique fixed point of d in Y ; that is, there is a unique u € Y such that Ju = u.
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Proof Fix uy € Y and consider u,, = J"u (the nth iterate of uy under application of g).
The sequence u,, is easily shown to be Cauchy in Y using (1.1) and therefore converges
to a limit # € Y because Y is complete (as a closed subset of X). Now u,, — u and hence
Up1 = du, — Ju as n — oo. We conclude that u,, converges to a fixed point of J.

If u,v € Y are both fixed points of g, then Ju — Jv = u — v. But (1.1) holds and hence
u = v and the fixed point is unique. m}

Spaces of continuously differentiable functions

The smoothness, also called regularity, of a function is described by its derivatives and we
now define spaces of functions with a given number of continuous derivatives. For a domain
D c R4 and Banach space (Y, [IIly), consider a function u: D — Y. We denote the partial
derivative operator with respect to x ; by D = aixj' Given a multi-index @ = (a,...,2,),

we define |@| =@ +--- + a4 and D* = D‘;‘ ---‘DZ”, so that

(14
D% = _al L.
al DY ad ’
Bxl (')xd

Definition 1.11 (continuous functions)

(i) C(D,Y) is the set of continuous functions «: D — Y. If D is bounded, we equip C(D,Y)
with the norm

[lulloe = sup [leC)ly- (1.2)
x€D

(i) C"(D,Y) with r € N is the set of functions u: D — Y such that D%u € C(D,Y) for
|@| < r; that is, functions whose derivatives up to and including order r are continuous.
We equip C"(D,Y) with the norm

”u”cr(ﬁ,y) = Z “Dau”m'

O<la|<r
We abbreviate the notation so that C(D, R) is denoted by C(D) and C"(D,R) by C" (D).
Proposition 1.12  If the domain D is bounded, C(D,Y) and C"(D,Y) are Banach spaces.
Proof The case of C(D) is considered in Exercise 1.1. ]

The following sets of continuous functions, which are not provided with a norm, are also
useful.

Definition 1.13 (infinitely differentiable functions)

(i) C*=(D,Y) is the set (), ey C"(D,Y) of infinitely differentiable functions from D to Y.

(ii)) CZ(D,Y) is the set of u € C*(D,Y) such that supp u is a compact subset of D, where the
support supp u denotes the closure of {x € D: u(x) # 0}. (The definition of compact is
recalled in Definition 1.66).
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The spaces C"(D,Y) specify the regularity of a function via the number, r, of continuous
derivatives. More refined concepts of regularity include Holder and Lipschitz regularity.

Definition 1.14 (Holder and Lipschitz) Let (X, |-||x) and (Y, ||-||y) be Banach spaces. A
function u: X — Y is Holder continuous with constant y € (0,1] if there is a constant
L > 0 so that

() —uCe)lly < Lllxy = xolls  Vxp,x, € X

If the above holds with y = 1, then u is Lipschitz continuous or globally Lipschitz continuous
to stress that L is uniform for x|, x, € X. The space C"¥(D) is the set of functions in C" (D)
whose rth derivatives are Holder continuous with exponent y.

Lebesgue integrals and measurability

The Lebesgue integral is an important generalisation of the Riemann integral. For a
function u: [a,b] — R, the Riemann integral L 4 u(x)dx is given by a limit of sums
Z;V: 61 u(§;) (x4 — x;) for points £; € [x;,x;,,], with respect to refinement of the partition
a = xy < - < xn = b. In other words, u is approximated by a piecewise constant
function, whose integral is easy to evaluate, and a limiting process defines the integral
of u. The Lebesgue integral is also defined by a limit, but instead of piecewise constant
approximations on a partition of [a, b], approximations constant on measurable sets are
used.
Let 1 be the indicator function of a set F so

1, x€F,
Lp(x) = 0, x¢F

Suppose that {F; } are measurable sets in [a, b] (see Definition 1.15) and u(F;) denotes the
measure of F; (e.g., if F; = [a,b] then u([a, b]) = |b — al). The Lebesgue integral of « with
respect to the measure y is defined via

b
[ ) oy = 1im 3, s,
4 J

where the limit is taken as the functions 3 ; u; 1 F, (x) converge to u(x). The idea is illustrated
in Figure 1.1, where the function u(x) is approximated by Z?: pu;l F, (x) for
F,=u'([-1,-05]), F,=u'((-05,05]), Fy=u"(0.5,1]),
u; =-0.8, u, =0, uy = 0.8.

Here, u~'([a,b]) = {x € R: u(x) € [a,b]}. To precisely define the Lebesgue integral, we
must first form a collection of subsets F that we can measure.

Definition 1.15 (o0-algebra) A set F of subsets of a set X is a o-algebra if

(i) the empty set {} € F,
(ii) the complement F€ = {x € X: x ¢ F} € Fforall F € &, and
(iii) the union U;.NF; € Ffor F; € F.



