Mtk NETZMERZE |

APPLIED

MICROSOFT .NET
FRAMEWORK PROGRAMMING

Microsoft .NET}EZ8

*Er- 8 VT som)

(€) Jeffrey Richter Z

Microsoft

el

R | | I G

TRAR . NETLE IR R 3)

Microsoft .NETHEZL
EEIRIT

(ELIR)

[HH
0

Applied Microsoft .NET Fra

(£) lJeffrey Richter j:; 3
Y,) B

Jeffrey Richter: Applied Microsoft .NET Framework Programming (ISBN 0-7356-1422-9).

Copyright © 2002 by Microsoft Corporation.

Original English language edition Copyright © 2002 by Jeffrey Richter; All rights
published by arrangement with the original publisher, Microsoft Press, a division of Microsoft

Corporation, Redmond, Washington, U.S.A.

‘ 7 45 B E AR B 22 VRO H B SRAHLAR Toll th BAL MM . %3 B BT, A8
D LR R SRR A B NA.
AU, BLLSE,

ABRENEIZS: EF: 01-2002-5817
BHEMSBE (CIP) ¥R

Microsoft NETHEZRR I (J3CRR) / (%) B#HHF (Richter, J.) F; -Jtx: MM
Tk R, 2003.1

(K NETZ R R)

F4JF3C: Applied Microsoft NET Framework Programming

ISBN 7-111-11272-5 '

[.M .8 W iHBEIME - BFEit-%3C V. TP393
o [i A P 4B CIPEUE A (2002) 550928615

BLBR Tl AR (b AR B FREA#228 MRBAIG 100037)
TiEmE:. £ H

R E S EEEEERT BRI - FEBERRRITIRT
20034E1 A1 KRB LR ERRI

787mm x 1092mm 1/16 - 39E[3k

EN¥C: 0001-3 000#

EHr: 78.0070

FUWAS, AET. B, B, @A IR

Reviewer Acclaim for Jeffrey Richter and
Applied Microsoft .NET Framework Programming

“The time Jeffrey spent with the .NET Framework is evident in this well-written
and informative book.”

Eric Rudder (senior vice president,

developer and platform evangelism, Microsoft)

“Jeff has worked directly with the folks who built the CLR [common language

runtime] on a daily basis and has written the finest book on the internals of the
CLR that you'll find anywhere.”

Dennis Angeline (lead program manager,

common language runtime, Microsoft)

“Jeff brings his years of Windows programming experience and insight to explain
how the .NET Framework really works, why we built it the way we did, and how
you can get the most out of it.”

Brad Abrams (lead program manager, .NET Framework, Microsoft)

“Jeff Richter brings his well-known flair for explaining complicated material clearly,

concisely, and accurately to the new areas of the C# language, the NET Frame-

work, and the .NET common language runtime. This is a must-have book for

anyone wanting to understand the whys and hows behind these important new
technologies.”

Jim Miller (lead program manager,

common language runtime kernel, Microsoft)

“Easily the best book on the common language runtime. The chapter on the CLR
garbage collector [Chapter 19] is awesome. Jeff not only describes the theory of
how the garbage collector works but also discusses aspects of finalization that
every .NET developer should know.”
Mahesh Prakriya (lead program manager,
common language runtime team, Microsoft)

“This book is an accurate, in-depth, yet readable exploration of the common
language runtime. It's one of those rare books that seems to anticipate the
reader’s question and supply the answer in the very next paragraph. The writing
is excellent.”

Jim Hogg (program manager, common language runtime team, Microsoft)

“Tust as Programming Applications for Microsoft Windows became the must-have
book for Win32 programmers, Applied Microsoft NET Programming promises to
be the same for serious .NET Framework programmers. This book is unique in
its bottom-up approach to understanding .NET Framework programming. By
providing the reader with a solid understanding of lower-level CLR concepts, Jeff
provides the groundwork needed to write solid, secure, high-performing man-
aged code applications quickly and easily.”
Steven Pratschner (program manager,
common language runtime team, Microsoft)

“Jeff Richter, he the MAN!”
Anonymous (program manager, common language runtime, Microsoft)

“I don’t care what it says; whenever Jeffrey authors a book, 1 immediately rush
out and get it and add it to my shelf of his computer books.”
Arlene Richter (Jeff's mom)

“This is the only .NET Framework book I'll ever read.”
Kristin Trace (Jeff’s wife)

“Meow!”
Max (Jeff’s cat)

“If I write only one .NET Framework book, this is it.”
Jeffrey Richter (himself)

To Kristin
I want to tell you bow much you mean to me.
Your energy and exuberance always lift me bigber.
Your smile brightens my every day.
Your zest makes my beart sing.
1 love you.

Acknowledgments

I couldn’t have written this book without the help and technical assistance of many
people. In particular, I'd like to thank the following people:

B Members of the Microsoft Press editorial team: Sally Stickney,
project editor and manuscript editor; Devon Musgrave, manuscript
editor; Jim Fuchs, technical editing consultant; Carl Diltz and Katherine
Erickson, compositors; Joel Panchot, artist; and Holly M. Viola, copy
editor.

H Members of the Microsoft .NET Framework team: Fred Aaron,
Brad Abrams, Mark Anders, Chris Anderson, Dennis Angeline, Keith
Ballinger, Sanjay Bhansali, Mark Boulter, Christopher Brown, Chris
Brumme, Kathleen Carey, Ian Carmichael, Rajesh Chandrashekaran,
Yann Christensen, Suzanne Cook, Krzysztof Cwalina, Shajan Dasan,
Peter de Jong, Blair Dillaway, Patrick Dussud, Erick Ellis Bill Evans,
Michael Fanning, Greg Fee, Kit George, Peter Golde, Will Greg, Bret
Grinslade, Brian Grunkemeyer, Eric Gunnerson, Simon Hall, Jennifer
Hamilton, Brian Harry, Michael Harsh, Jonathan Hawkins, Anders
Hejlsberg, Jim Hogg, Paul Johns, Gopal Kakivaya, Sonja Keserovic, Abhi
Khune, Loren Kornfelder, Nikhil Kothari, Tim Kurtzman, Brian
LaMacchia, Sebastian Lange, Serge Lidin, Francois Liger, Yung-Shin
“Bala” Lin, Mike Magruder, Rudi Martin, Erik Meijer, Gene Milener, Jim
Miller, Anthony Moore, Vance Morrison, David Mortenson, Yuval
Neeman, Lance Olson, Srivatsan Parthasarathy, Mahesh Prakriya, Steven
Pratchner, Susan Radke-Sproul, Jayanth Rajan, Dmitry Robsman, Jay
Roxe, Dario Russi, Craig Schertz, Alan Shi, Craig Sinclair, Greg Single-
ton, Ralph Squillace, Paul Stafford, Larry Sullivan, Dan Takacs, Ryley
Taketa, David Treadwell, Sean Trowbridge, Nate Walker, Sara Williams,
Jason Zander, and Eric Zinda. If I've forgotten anyone, please forgive me.

B Reviewers: Keith Ballinger, Tom Barclay, Lars Bergstrom, Stephen
Butler, Jeffrey Cooperstein, Robert Corstanje, Tarek Dawoud, Sylvain
Dechatre, Ash Dhanesha, Shawn Elliott, Chris Falter; Lakshan Fernando,
Manish Godse, Eric Gunnerson, Brian Harry, Chris Hockett, Dekel
Israeli, Paul Johns, Jeanine Johnson, Jim Kieley, Alex Lerner, Richard
Loba, Kerry Loynd, Rob Macdonald, Darrin Massena, John Noss, Piet

xviii Acknowledgments

Obermeyer, Peter Plamondon, Keith Pleas, Mahesh Prakriya, Doug
Purdy, Kent Sharkey, Alan Shi, Dan Vallejo, Scott Wadsworth, Beth
Wood, and Steven Wort,

[] Wintellectuals: Jim Bail, Francesco Balena, Doug Boling, Jason Clark,
Paula Daniels, Dino Esposito, Lewis Frazer, John Lam, Jeff Prosise, John
Robbins, Kenn Scribner, and Chris Shelby.

Introduction

Over the years, our computing lifestyles have changed. Today, everyone sees the
value of the Internet, and our computing lifestyle is becoming more and more
dependent on Web-based services. Personally, Ilove to shop, get traffic conditions,
compare products, buy tickets, and read product reviews all via the Internet.

However, I'm finding that there are still many things I'd like to do using the
Internet that aren’t possible today. For example, I'd like to find restaurants in my
area that serve a particular cuisine. Furthermore, I'd like to be able to ask if the
restaurant has any seating for, say, 7:00 p.m. that night. Or if I had my own
business, I might like to know which vendor has a particular item in stock. If
multiple vendors can supply me with the item, I'd like to be able to find out which
vendor offers the least expensive price for the item or maybe which vendor can
deliver the item to me the fastest.

Services like these don’t exist today for two main reasons. The first reason
is that no standards are in place for integrating all this information. After all,
vendors today each have their own way of describing what they sell. The emerg-
ing standard for describing all types of information is Extensible Markup Language
(XML). The second reason these services don’t exist today is the complexity of

‘developing the code necessary to integrate such services.

Microsoft has a vision in which selling services is the way of the future—
that is, companies will offer services and interested usegg, can consume these
services. Many services will be free; others will be available through a subscrip-
tion plan, and still others will be charged per use. You can think of these ser-
vices as the execution of some business logic. Here are some examples of services:

Validating a credit card purchase

Getting directions from point A to point B |

Booking a flight on an airline, a hotel room, or a rental car

|

[|

M Viewing a restaurant’s menu

|

B Updating photos in an online photo album
]

Merging your calendar and your children’s calendars to plan a family

vacation
B Paying a bill from a checking account
B Tracking a package being shipped to you

xix

XX

Introduction

I could go on and on with ideas for services that any company could imple-
ment. Without a doubt, Microsoft will build some of these services and offer them
in the near future, Other companies (like yours) will also produce services, some
of which might compete with Microsoft in a free market.

So how do we get from where we are today to a world in which all these
services are easily available? And how do we produce applications—HTML-based
or otherwise—that use and combine these services to produce rich features for
the user? For example, if restaurants offered the service of retrieving their menu,
an application could be written to query every restaurant’s menu, search for a
specific cuisine or dish, and then present only those restaurants in the user’s own
neighborhood in the application.

Nole 7o create rich applications like these, businesses must offer a pro-
grammatic interface to their business logic services. This programmatic
interface must be callable remotely using a network, like the Internet. This
is what the Microsoft .NET initiative is all about. Simply stated, the .NET
initiative is all about connecting information, people, and devices.

Let me explain it this way: Computers have peripherals—mouse, monitor,
keyboard, digital cameras, and scanners—connected to them. An operating sys-
temn, such as Microsoft Windows, provides a development platform that abstracts
the application’s access to these peripherals. You can even think of these periph-
erals as services, in a way.

In thig new world, the services (or peripherals) are now connected to the
Internet. Developers want an easy way to access these services. Part of the
Microsoft .NET initiative is to provide this development platform. The following
diagram shows an analogy. On the left, Windows is the development platform
that abstracts the hardware peripheral differences from the application developer.
On the right, the Microsoft .NET Framework is the development platform that
abstracts the XML Web service communication from the application developer.

Accessing machine peripherals Accessing Infernet services

Introduction xxi

Although a leader in the development and definition of the standards in-
volved in making this new world possible, Microsoft doesn’t own any of the
standards. Client machines describe a server request by creating specially for-
matted XML and then sending it (typically using HTTP) over an intranet or the
Internet. Servers know how to parse the XML data, process the client’s request,
and return the response as XML back to the client. Simple Object Access Proto-
col (SOAP) is the term used to describe the specially formatted XML when it is
sent using HTTP.

The following figure shows a bunch of XML Web services all communicat-
ing with one another using SOAP with its XML payload. The figure also shows
clients running applications that can talk to Web services and even other clients
via SOAP (XML). In addition, the figure shows a client getting its results via HTML
from a Web server. Here the user probably filled out 2 Web form, which was sent
back to the Web server. The Web server processed the user’s request (which
involved communicating with some Web services), and the results are ultimately
sent back to the user via a standard HTML page.

XML
communicates
data between
Web services

HTML communicates
data between the
browser and Web
services

In addition, the computers providing the services must be running an op-
erating system that is listening for these SOAP requests. Microsoft hopes that this
operating system will be Windows, but Windows isn't a requirement. Any oper-
ating system that can listen on a TCP/IP socket port and read/write bytes to the
port is good enough. In the not too distant future, mobile phones, pagers, auto-
mobiles, microwave ovens, refrigerators, watches, stereo equipment, game con-
soles, and all kinds of other devices will also be able to participate in this new world.

xxii

Introduction

On the dlient or application side, an operating system must be running that
can read/write to a socket port to issue service requests. The client’s computer
must also be capable of supporting whatever features the user’s application
desires. If the user’s application wants to create a window or a2 menu, the oper-
ating system must provide this functionality or the application developer must
implement it manually. Of course, Microsoft hopes that people will write appli-
cations that take advantage of the rich feature set in Windows, but again, Windows
is a recommendation, not a necessity.

What I'm trying to say is that this new world will happen whether Microsoft
is a part of it or not. Microsoft’s .NET initiative is all about making it really easy
for developers to create and access these services.

Today, we could all go write our own operating system and create our own
custom Web servers to listen and manually process SOAP requests if we wanted
to, but it’s really hard and would take a long time. Microsoft has taken on all this
hard work for us, and we can just leverage Microsoft’s efforts to greatly simplify
our own development efforts. Now we, as application developers, can concen-
trate and focus on our business logic and services, leaving all the communica-
tion protocols and plumbing to Microsoft (who has a lot of developers that just
love to do this nitty-gritty stuff).

What Makes Up the Microsoft .NET Initiative

I've been working with Microsoft and its technologies for many years now. Over

the years, I've seen Microsoft introduce all kinds of new technologies and ini-

tiatives: MS-DOS, Windows, Windows CE, OLE, COM, ActiveX, COM+, Windows
DNA, and so on. When I first started hearing about Microsoft’s .NET initiative, I
was surprised at how solid Microsoft’s story seemed to be. It really seemed to
me that they had a vision and a plan and that they had rallied the troops to
implement the plan.

I contrast Microsoft’s .NET platform to ActiveX, which was just 2 new name
given to good old COM to make it seem more user friendly. ActiveX didn’t mean
much (or so many developers thought), and the term, along with ActiveX con-
trols, never really took off. I also contrast Microsoft’s .NET initiative to Windows
DNA (Distributed InterNet Architecture), which was another marketing label that
Microsoft tacked onto a bunch of already existing technologies. But I really believe
in the Microsoft .NET initiative, and to prove it, I've written this book. So, what
exactly constitutes the Microsoft .NET initiative? Well, there are several parts to
it, and I'll describe each one in the following sections.

Introduction xxiii

An Underlying Operating System: Windows

Because these Web services and applications that use Web services run on com-
puters and because computers have peripherals, we still need an operating sys-
tem. Microsoft suggests that people use Windows. Specifically, Microsoft is adding
XML Web service—specific features to its Windows line of operating systems, and
Windows XP and the servers in the Windows .NET Server Family will be the
versions best suited for this new service-driven world.

Specifically, Windows XP and the Windows .NET Server Family products
have integrated support for Microsoft .NET Passport XML Web service. Passport
is a service that authenticates users. Many Web services will require user authen-
tication to access information securely. When users log on to a computer run-
ning Windows XP or one of the servers from the Windows .NET Server Family,
they are effectively logging on to every Web site and Web service that uses Pass-
port for authentication. This means that users won’t have to enter usernames and
passwords as they access different Internet sites. As you can imagine, Passport
is 2 huge benefit to users: one identity and password for everything you do, and
you have to enter it only once!

In addition, Windows XP and the Windows .NET Server Family products

* have some built-in support for loading and executing applications implement-
ing the NET Framework. Finally, Windows XP and the Windows .NET Server
Family operating systems have a new, extensible instant messaging notification
application. This application allows third-party vendors (such as Expedia, the
United States Postal Service, and many others) to communicate with users
seamlessly. For example, users can receive automatic notifications when their
flights are delayed (from Expedia) and when a package is ready to be delivered
(from the U.S. Postal Service).

I don't know about you, but I've been hoping for services like these for
years—I can’t wait!

Helpful Products: The .NET Enterprise Servers

As part of the .NET initiative, Microsoft is providing several products that com-
panies can choose to use if their business logic (services) find them useful. Here
are some of Microsoft’s enterprise server products:

B Microsoft Application Center 2000
B Microsoft BizTalk Server 2000

B Microsoft Commerce Server 2000
B Microsoft Exchange 2000

xXiv Introduction

Microsoft Host Integration Server 2000

Microsoft Internet Security and Acceleration (ISA) Server 2000
Microsoft Mobile Information Server 2002

Microsoft SQL Server 2000

It’s likely that each of these products will eventually have a “NET” added
to its name for marketing purposes. But 'm also sure that over time, these products
will integrate more .NET features into them as Microsoft continues the initiative.

Microsoft XML Web Services: .NET My Services

Certainly, Microsoft wants to do more than just provide the underlying technolo-
gies that allow others to play in this new world. Microsoft wants to play too. So,
Microsoft will be building its own set of XML Web services: some will be free,
and others will require some usage fee. Microsoft initially plans to offer the fol-
lowing .NET My Services:

@ NET Alerts

NET ApplicationSettings
.NET Calendar

NET Categories

.NET. Contacts

.NET Devices

.NET Documents
.NET FavoriteWebSites
.NET Inbox

NET Lists

.NET Locations

.NET Presence

.NET Profile

.NET Services

NET Wallet

These consumer-oriented XML Web services are known as Microsoft’s
“NET My Services.” You can find out more information about them at
bitp./www. Microsoft.com/MyServices/. Over time, Microsoft will add many more
consumer services and will also be creating business-oriented XML Web services.

introduction XXV

In addition to these public Web services, Microsoft will create internal ser-
vices for sales data and billing. These internal services will be accessible to
Microsoft employees only. I anticipate that companies will quickly embrace the
idea of using Web services on their intranets to make internal company informa-
tion available to employees. The implementation of publicly available Internet Web
services and applications that consume them will probably proceed more slowly.

The Development Platform: The .NET Framework

Some of the Microsoft .NET My Services (like Passport) exist today. These ser-
vices run on Windows and are built using technologies such as C/C++, ATL,
Win32, COM, and so on. As time goes on, these services and new services will
ultimately be implemented using newer technologies, such as C# (pronounced
“C sharp”) and the .NET Framework.

!mpurtant Even though this entire introduction has been geared toward
building Internet applications and Web services, the .NET Framework is
capable of a lot more. All in all, the .NET Framework development platform
allows developers to build the following kinds of applications: XML Web
services, Web Forms, Win32 GUI applications, Win32 CUI (console Ul)
applications, services (controlled by the Service Control Manager), utilities,
and stand-alone components. The material presented in this book is appli-
cable to any and all of these application types.

The .NET Framework consists of two parts: the common language runtime
(CLR) and the Framework Class Library (FCL). The .NET Framework is the part
of the initiative that makes developing services and applications really easy. And,
most important, this is what this book is all about: developing applications and
XML Web services for the .NET Framework.

Initially, Microsoft will make the CLR and FCL available in the various ver-
sions of Windows, including Windows 98, Windows 98 Second Edition, and
Windows Me as well as Windows NT 4, Windows 2000, and both 32-bit and
64-bit versions of Windows XP and the Windows .NET Server Family. A “lite”
version of the .NET Framework, called the. NET Compact Framework, is also avail-
able for PDAs (such as Windows CE and Palm) and appliances (small devices).
On December 13, 2001, the European Computer Manufacturers Association
(ECMA) accepted the C# programming language, portions of the CLR, and por-
tions of the FCL as standards. It won't be long before ECMA-compliant versions
of these technologies appear on a wide variety of operating systems and CPUs.

xxvi

Introduction

Note windows XP (both Home Edition and Professional) doesn't ship with
the .NET Framework “in the box.” However, the Windows .NET Server Family
(Windows .NET Web Server, Windows .NET Standard Server, Windows
.NET Enterprise Server, and Windows .NET Datacenter Server) will include
the .NET Framework. In fact, this is how the Windows .NET Server Family
got its name. The next version of Windows (code-named “Longhorn”) will
include the .NET Framework in all editions. For now, you'll have to redistribute
the .NET Framework with your application, and your setup program will
have to install it. Microsoft does make a .NET Framework redistribution
file that youre allowed to freely distribute with your application:
http://go.microsoft.com/fwlink/?Linkld=5584.

Almost all programmers are familiar with runtimes and class libraries. I'm
sure many of you have at least dabbled with the C-runtime library, the standard
template library (STL), the Microsoft Foundation Class library (MFC), the Active
Template Library (ATL), the Visual Basic runtime library, or the Java virtual
machine. In fact, the Windows operating system itself can be thought of as a
runtime engine and library. Runtime engines and libraries offer services to ap-
plications, and we programmers love them because they save us from reinvent-
ing the same algorithms over and over again.

The Microsoft .NET Framework allows developers to leverage technologies
more than any earlier Microsoft development platform did. Specifically, the .NET
Framework really delivers on code reuse, céde specialization, resource manage-
ment, multilanguage development, security, deployment, and administration.
While designing this new platform, Microsoft also felt it was necessary to improve
on some of the deficiencies of the current Windows platform. The following list
gives you just a small sampling of what the CLR and the FCL provide:

B Consistent programming model Unlike today, where some op-
erating system facilities are accessed via dynamic-link library (DLL)
functions and other facilities are accessed via, COM objects, all appli-
cation services are offered via a common object-oriented programming
model.

B Simplified programming model The CLR seeks to greatly simplify
the plumbing and arcane constructs required by Win32 and COM.
Specifically, the CLR now frees the developer from having to under-
stand any of the following concepts: the registry, globally unique iden-
tifiers (GUIDs), IUnknown, AddRef, Release, HRESULTs, and so on. The
CLR doesn’t just abstract these concepts away from the developer; these

Introduction

concepts simply don’t exist, in any form, in the CLR. Of course, if you
want to write a .NET Framework application that interoperates with
existing, non-.NET code, you must still be aware of these concepts.

Run once, run always All Windows developers are familiar with
“DLL hell” versioning problems. This situation occurs when compo-
nents being installed for a new application overwrite components of
an old application, causing the old application to exhibit strange be-
havior or stop functioning altogether. The architecture of the NET
Framework now isolates application components so that an applica-
tion always loads the components that it was built and tested with. If
the application runs after installation, then the application should al-
ways run. This slams shut the gates of “DLL hell.”

Simplified deployment Today, Windows applications are incred-
ibly difficult to set up and deploy. Several files, registry settings, and
shortcuts usually need to be created. In addition, completely
uninstalling an application is nearly impossible. With Windows 2000,
Microsoft introduced a new installation engine that helps with all these
issues, but it’s still possible that a company authoring a Microsoft in-
staller package might fail to do everything correctly. The .NET Frame-
work seeks to banish these issues into history. The .NET Framework
components (known simply as #ypes) are not referenced by the reg-
istry. In fact, installing most .NET Framework applications requires no
more than copying the files to a directory and adding a shortcut to the
Start menu, desktop, or Quick Launch bar. Uninstalling the applica-
tion is as simple as deleting the files.

Wide platform reach When compiling source code for the .NET
Framework, the compilers produce common intermediate language
(CIL) instead of the more traditional CPU instructions. At run time, the
CLR translates the CIL into native CPU instructions. Because the trans-
lation to native CPU instructions is done at run time, the translation
is done for the host CPU. This means that you can deploy your NET
Framework application on any machine that has an ECMA-compliant
version of the CLR and FCL running on it. These machines can be x86,
[1A64, Alpha, PowerPC, and so on. Users will immediately appreciate
the value of this broad execution if they ever change their comput-
ing hardware or operating system.

Programming language integration COM allows different
programming languages to interoperate with one another. The NET
Framework allows languages to be integrated with one another so that
you can use types of another language as if they are your own. For

xxvil

