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The two main problems of calculus

If an object traveling at constant speed moves 6 feet in 2 seconds, its speed is
easy to find:

dist 6
Speed = S .= 3 feet per second.

time

However, suppose that the object travels at a varying speed. If we know how far
it travels during any period of time, how can its speed at any given instant be
found? For example, assume that a rock drops 1612 feet in the first ¢ seconds of
its fall, as Galileo discovered. What is its speed ¢ seconds after its release?
This question, answered in Sec. 1.1, introduces the first of the two basic concepts
of the calculus, the derivative.

The question can be turned around: If an object travels at a varying speed and
we know this speed at any instant, how can the distance it travels be found ?
For example, if the speed of a rocket is t? feet per second after t seconds, how
far does it travel in the first 3 seconds? This question is answered in Sec. 1.2.
It introduces the second basic concept of calculus, the definite integral.

11 HOW TO FIND THE VARYING SPEED FROM THE DISTANCE

Suppose that a rock, starting from rest, falls 16t feet in t seconds. What is
its speed after t seconds? For the sake of simplicity, consider a specific value
of t,say t =2. Let us find the speed after 2 seconds.

To begin with, introduce a vertical line to record the position of the rock, as in
the accompanying figure. The watch shown in the figure at the left will be used
to record time. In the first half second, the rock falls 16(15)> = 4 feet. In the
first second, the rock falls 16(1)? = 16 feet. Thus, during the second half second

1
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0+ <——— Initial position
10l of rock
20+
30+
40 1+
890+
60 +
70 +

the rock falls 16 — 4 = 12 feet, which is three times as far as it falls during the
first half second.

As the rock falls, its speed increases.

To find the rock’s speed after it has been falling for 2 seconds, consider the
distance it travels in a brief interval after the first 2 seconds of fall. If we observe
only a single instant of time (precisely 2 seconds after the rock is dropped), we
cannot hope to find the speed, which depends on distance traveled. In the
same way, a photographer could not hope to compute the rock’s speed from a
single photograph. But from two photographs taken a very short time apart,
he could at least estimate the speed of the rock.

Take a specific short interval of time, say, from time ¢t = 2 seconds to time
2.1 seconds, a duration of 0.1 second. To find the distance traveled, use the
formula 16¢? and subtract:

16(2.1)* — 16(2)% = 16(4.41) — 16(4)
= 70.56 — 64
= 6.56 feet.

These computations show that during the interval of 0.1 second, the rock drops
6.56 feet.
A reasonable estimate of the speed of the rock at time ¢ = 2 is therefore

Distance 6.56
—_— e —— — 6 2 .
Time 01 5.6 feet per second

This may be thought of as the average speed during the brief interval from t = 2
to 2.1 seconds, a duration of 0.1 second.

Use of a shorter time interval will presumably provide a more accurate
estimate. Choose, say, the time interval from t = 2 to 2.01 seconds, a duration
of only 0.01 second. The distance the rock falls during this shorter interval of
time is

16(2.01)% — 16(2)% = 16(4.0401) — 16(4)
= 64.6416 — 64
= 0.6416 foot.
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The accompanying figures show it pictorially.
Using this shorter time interval provides a more accurate estimate of the speed
at time t = 2, namely,

0.6416
T 64.16 feet per second.

The average speed during this shorter interval of time is 64.16 feet per second.

Rather than compute the average speed over shorter and shorter time intervals,
let us use algebra to treat the general short interval of time, from time =2 to a
time ¢, which is larger than 2. (Read 1, as *'t subone.”) This time interval has
a duration of

t, —2 seconds.
During this time the rock falls
16(t,)* — 16(2)* feet;
and the quotient
16(1,)? — 16(2)*
t, —2

is an estimate of the speed after 2 seconds of fall. The closer t, is to 2, the more
closely this estimate approximates the exact speed at time 2.
A little algebra changes the quotient

16(t,)* — 16(2)*
t, —2
into an equivalent expression much easier to work with:

16(t)? — 1627 _ (1) — (2
e o o

_ g0 =2
t, —2

= 16(t, + 2).
In short,

16(t,)* — 16(2)*
__(L_—(l=]6(t1+2)’
-

an algebraic identity that is valid whenever is different from 2.
Note for later reference: The step in which (t,)* — (2)* is replaced by
(t, +2)(t; — 2)
follows from the algebraic identity
2 —d* = (c+d)c—ad).
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It is easy to see that as ¢, gets closer and closer to 2, the expression
! 16(t, + 2)
approaches ,
16(2 + 2) = 64.
Therefore, it seems reasonable to claim that after 2 seconds of falling, the rock
has a speed of

64 feet per second.
We have found the speed when ¢ = 2 seconds. Before going on to find a
formula for the speed at any time ¢, a warning should be posted.
Important warning: At no step in the reasoning was t; set equal to 2. When
t, = 2, there is no physical sense in the notion ““average speed from time 2 to
time 2, a duration of 0 seconds.” During such a time interval the rock moves a
distance of O feet. The quotient

Distance
Time
in that case becomes the meaningless expression

0

0

An argument similar to that used to find the speed at ¢t = 2 holds for any time ¢
during the descent of the rock. To find the speed at time ¢, consider a small
interval from time ¢ to time #;,. This interval has a duration of t; — ¢ seconds
and is illustrated in the figure at the left. During this time the rock falls

16(t,)* — 16(t)*>"  feet.

16(t,)* — 16(t)

Thus
tl e t
is a reasonable estimate of the speed at time ¢t. This quotient equals

W U
fy —t

_ gt 0 =0
t, —1

= 16(t; + 1).
When ¢, is near ¢, the quotient is near
16(t + 1),
which is 32t.
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Therefore the speed of the rock after ¢ seconds is
32t feet per second.

When t = 2, the general formula for the speed of the rock, 32t, gives the value
32(2) = 64 feet per second, in accordance with the earlier computation for that
special case. The formula 32¢ shows that the speed is proportional to the time.

The preceding method, which finds the speed of the falling rock, may also be
used to find the speed of an object whose motion is described by a formula other
than 1672, The basic approach is the same, though the specific algebraic
details will be different. Exercises 10 and 11 illustrate this.

The procedure illustrated in this section is called differentiation. We say that
differentiation of 167> yields 32t, or that the derivative of 161205 321,

Chapter 3 develops the ideas of this section in greater generality. It will be
shown there that the speed of a moving object is just one of many applications of
differentiation.

1. This table records how far a certain object travels up to the given time:

Distance traveled up to the

Time, seconds given time, feet
1 -4.2
1.01 43
151 5.7

(@) What is the average speed of the object from time =1 to 1.1?

(b) What is its average speed from time t =1 to 1.01?

2. How far does a rock dropping 162 feet in the first seconds fall during: (a) the first 0.25
second; (b) the first second; (c) the first 1.5 seconds ?

3. How far does the rock of Exercise 2 fall during (a) the second second, (b) the third second,
(¢) the fourth second ?

4. How far does the rock of Exercise 2 fall (@) from time =1 to 1.01 seconds; (b) from time
t=1 to 1.001 seconds?

5. Estimate the speed of the rock of Exercise 2 at time ¢ = 1, using the data in (@) Exercise 4(a);
(b) Exercise 4(b). : S

6. Find the speed of the rock of Exercise 2 at time ¢ = 1 by considering the distance covered
during the time interval from 1 second to t, seconds, where 7, is larger than 1.

(@) How far does the rock fall during this time interval?

(b) How long is this time interval ?

(¢) What estimate of the speed after 1 second of fall is provided by this typical case?

(d) Letting approach 1, find the speed after 1 second of fall.

7. The formula developed in the text asserts that after ¢ seconds, the speed of the rock is
32t feet per second. Using this formula, find its speed (in feet per second) when # is (a) 0;
b) 0.5; () 1; (d) 4.

8. A certain object moves 2 feet in its first seconds of motion. Find its speed at time 7 by
considering short intervals of time from time 7 to #; and then letting ¢, approach 7.

O

Exercise 10 concerns an object that travels 72 feet in the first 7 seconds of its motion. It shows
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that the method of Sec. 1.1 applies quite generally. Exercise 9 presents an algebraic identity
that will be needed in Exercise 10.

9. By multiplying the two factors in parentheses, show that
3 —d?=(c®+ cd+ d*(c—d).

10. A certain object travels ¢ feet during its first # seconds of motion.

(@) How far does it travel up to time 7, ?

(b)) How far does it travel from time ¢ to time #, ?

(¢) How long is the time interval from time # to time 7, ?

(d) Using (b), (¢), and the identity from Exercise 9, show that the average speed during the
interval from time 7 to ¢, is

12+ tit+ 12 feet per second.

(e) Use (d) to show that its speed at time # is 372 feet per second.

11. Use the formula in Exercise 10(e) to find the speed of the object in feet per second after
(a) 0.5 second; (b) 1 second; (¢) 2 seconds.

12. By multiplying the two factors in parentheses, show that

¢t —d* = (c® + c?d + cd? + d3)(c — d).

13. An object travels ¢* feet during its first # seconds of motion. Use the identity in Exercise
12 to show that its speed at time 7 is 4¢3 feet per second.

14. An object travels ¢° feet during its first 7 seconds of motion. Find its speed at time .
(You will need to develop an algebraic identity for ¢® — d°.)

1.2 HOW TO FIND THE DISTANCE FROM THE VARYING SPEED

If ah object travels at a constant speed of 1 foot per second, then in ¢ seconds it
travels t feet. It is simple to find the distance covered by an object moving at a
constant speed: just use the formula

Distance = speed - time.

But what if a rocket moves in such a way that after ¢ seconds it is traveling at >
feet per second? How far does it travel in the first ¢ seconds? This question is
typical of the second main problem in calculus. Observe that this question is
the opposite of that raised in Sec. 1.1. Here the varying speed of an object is
given, and the distance it travels is sought. In Sec. 1.1 the distances were given,
and the varying speeds were sought.

First, try to get a feel for the problem by estimating how far the rocket moves
during its first 3 seconds of motion, that is, up to the time ¢ = 3.

The rocket moves most slowly at the beginning of its flight, since its speed at
time ¢t = 0 is 02 = 0 feet per second. It moves most quickly at the end, when
t = 3, and its speed is 3% = 9 feet per second. Since the entire time is 3 seconds,
it follows that it moves at least

0:3 =0 feet
and at most

9.3 =07 feet,



B e e i e s it e e

Distance covered, feet

Time interval At least At most
First half second 0 %
Second half second 1 4%
Third half second 44 %
Fourth half second 9% 164
Fifth half second 164 25¢
Sixth half second 254 364

74 1.2 HOW TO FIND THE DISTANCE FROM THE VARYING SPEED

This tells something, but not much, about the exact distance the rocket moves
in the first 3 seconds.

Though the speed of the rocket continually increases, the speed changes very
little during short intervals of time. So let us divide the time interval of 3
seconds into smaller intervals of time, say, into six intervals, each of which has a
duration of half a second. Estimates of the distance covered during each of
these short intervals, when added together, provide an estimate of the distance
covered during the first 3 seconds.

This line segment represents the time during the first 3 seconds:

; Time
3 in seconds

1
T

2

0

1

=
N 4
S| 4

(This is now more convenient to work with than the watch of Sec. 1.1.)

How far does the rocket move during the first half-second, from time t =0 to
time t = 157 Since its speed keeps changing, a precise answer cannot be given
immediately. However, since we know that the speed is increasing, the greatest

. speed of the rocket during this time interval is (14)? feet per second (since its

speed is t* feet per second at any time t). The least speed is 02 =0 feet per:
second, at the beginning of this initial time interval. Therefore during the first
half second it travels at least

02 - 15 =0 feet
and at most
(1%)* - 15 = 14 foot.
Similarly, during the second half second, from time t = 14 to 1, the slowest

it travels is (14)? feet per second, and the fastest is (1)? feet per second. There-
fore during the second half second it travels at least

(14)* - 14 = 15 foot
and at most
(1)? - 15 = (2%)* - 15 = 4 foot.

The remaining four half-second intervals of time can be treated similarly.
It follows that during the first 3 seconds the rocket travels at least

0+%+%+%+1%+2%=5%=6.875feet
and at most
%+%+%+1%+2%+3%=9%=11.375feet.

The table at left summarizes these computations. Thus, the distance covered
during the first 3 seconds is between 6.875 and 11.375 feet. This certainly gives
more information than did the first crude estimate, which was between 0 and
27: fect:

More accurate estimates can be. obtained by dividing the 3-second time
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interval into much shorter ones: since the speed changes very little in very short
time intervals, the estimates suggested by constant speed in each subinterval,
namely

Distance = speed - time

becomes more accurate. For instance, when the 3-second interval is cut

into 30 intervals, each of 0.1-second duration, a calculation similar to the pre-

ceding one shows that the object travels at least 8.565 feet and at most 9.455 feet.
The estimates discussed so far are recorded in this table:

Number of Length of each Lower Upper
time intervals time interval, seconds estimate, feet estimate, feet
1 3 0.0 27.0
6 0.5 6.875 11.375
30 0.1 8.565 9.455

If the time interval of 3 seconds is divided into even smaller intervals, it
seems reasonable to expect that the lower and upper estimates obtained will be
even closer to the actual distance traveled.

As in Sec. 1.1, the algebra of the general case is simpler than the arithmetic of
the specific case. Imagine dividing the 3 seconds of time not into six, not into
30, but into n small intervals of time, where » is any positive integer. The
small intervals may or may not be of equal duration.

i . 4
T T T T T T T LG W

0 3

Consider a typical upper estimate. It is based on the right-hand end times
of each little time interval. Call these times -
T L
(Read ““t sub one,” “t sub two,” ..., “t subn.”’) Observe that

=13
For convenience, name the left-hand end time, which is O, ¢, .

Il i } Il
T T T T

L }
Ly Tl 141 5] S50 e LU tn=3

During the first time interval, from time ¢, to time t,, the rocket never goes
faster than

t,? feet per second.
Since the duration of the first interval is

t, — 1ty seconds,
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the object travels at most
t 5t - ty) - feet
during that first interval.
Similarly, it travels at most
14t — 1) fest

during the second time interval.
There are n intervals of time to consider. Adding the n estimates shows that

during the 3 seconds the object travels at most
o0 = ) EhR L =) o Pt T TRl

We shall now show with a little algebra that this typical upper estimate is
always larger than 9 feet. To begin, we need the fact that for any numbers ¢

and d,
3 —d?=(c? + cd + d*)(c —d),
an algebraic identity that can be proved by multiplying the two factors in paren-

theses on the right side. Assume now that ¢ and d are nonnegative numbers
and that c is larger than d; in symbols,

e>d=0.
Then A4ed+di<c+c e+

since d on the left is replaced throughout by the larger number ¢ on the right.
Multiplying both sides of this inequality by the positive number ¢ — d shows
that
A —d?<(+c?+cHc—4d),

or S L@ 3¢ e ~d)
Therefore upon division by 3,
C3 pis dS 5
<c*(c —d).
Soa d3
Consequently c—d)> S y
e 4
2e—d)>———>
or c*(c —d) =

which is the inequality needed in the rest of the argument.
This inequality, applied to each of the n time intervals, shows that

3 3

t to
2t — 1) > ey
33

t
121, — ) > % o



