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PREFACE

The importance of biomedical ultrasonics has increased greatly during the
six years which I have spent working on this book. The impact which

ultrasonic methods now have on health care exceeds all early expectation.
As an academic pursuit, the study of biomedical ultrasonics has attracted
many accomplished scientists. I have the privilege of bemg acquainted with
many of the doctors, physicists, biologists and engineers whose work I
have tried to describe. I hope that Biomedical Ultrasonics will contribute
to the development of the sub]ect by serving as the primary source of
reference for everyone interested in the basic principles and applwatlons_.
okultrasonic energy in medicine and biology. '

February 1977 “  P.N.T. WeLLs
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1. WAVE FUNDAMENTALS*

1.1 SIMPLE HARMONIC MOTION

Consider the situation represented in Fig. 1.1. A particle of mass m is
supported on a surface free from friction, and attached to a weightless
spring of compliance . If the particle is displaced from its equilibrium
position, a restoring force F acts on the particle, given by, according to
Hooke’s law: 5

Lz g2 ol 31 W Iggop

where u is the displacement amplitude. The restoring force acts on the
particle in such a direction as to return it to its equilibrium position. The
magnitude of this force is proportional to the amplitude of the displacement
(i.e. the distance between the posmon of the particle and its equilibrium
position). This direct proportionality is the feature of simple harmonic
motion which distinguishes it from other, more complicated vibrations.
In simple harmonic motion there is always an equilibrium situation at
which the oscillating system could remain at rest. Although the oscillations
dealt with in this Section are of the mechanical type analogous oscillations
occur in electrical circuits (see Appendix 1).
Applying Newton’s second law of motion to-Eqn. 1.1:
d?u
u/§=ma—m2t—-§ , (1.2)v

where a is the acceleration of the particle at time #. Equation 1.2 may be

rearranged thus:
d u ,
P Lmn o 19169

The dimensions of 1/ m are [T-2]. In a vibrating system, the particle
completes one cycle of oscillation in a period 7, which has dimensions [7'];
the frequency, f (i.e. the number of cycles in unit time)=1/r. The dimen-

* Generally the results presented in this Chapter are derived from first principles.
Where results are quoted ‘without derivation or reference to other works, a pub-
lished text on acoustics may be consulted. These texts include those of Blitz (1963),
Gooberman (1968), Hueter and Bolt (1955) and Kinsler and Frey (1962).
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Fic. 1.1 Spring-particle system in simple harmonic motion.

sions of 1/{m are therefore the same as those of 2. Hence, Eqn. 1.3 may
be rewritten:

%2'—‘+(bf)2u=0 (1.4)
12 | :

where (bf)2=1/{m, b being a constant, and f being the frequency at which
the particle oscillates. There are two possible solutions to Eqn. 1.4: these

are:

u=A cos bft=A cos wt- (1.5)
and )
u=B sin bft=B sin wt (1.6)
These solutions satisfy Eqn. 1.4 because, from Eqn. 1.5;
s N
an= Aw? cos wt
andj from Eqn. 1.6;
%’;— — Bw? sin wt

where 4 and B are constants with the same dimensions as %, and w=>5bf=
2nf, where w is defined as the angular frequency of the system. |

The general solution to Eqn. 1.4 is given by superposition of the values
of # in Eqns. 1.5 and 1.6:

u=A cos wt+ B sin wt ' (1.7)

Equation 1.7 becomes, if 4 is rewritten as ug sin ¢, and B, as —ug cos ¢,
where ug=(A42+ B2)!/2, and ¢ is a constant:

1 =10 Sin ¢ cos wt—ug cos ¢ sin wt
=ug sin (wt—¢) (1.8)
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Expressed in words, Eqn. 1.8 means that the displacement amplitude u
of a particle in simple harmonic motion from its equilibrium position is
equal, at any time #, to the product of its peak dxsplacement amplitude uo,
and the sine of a time-varying angle (wt—¢) in which w is the angular
frequency 2af of the oscillation of the particle, and ¢ is the phase angle;
¢ defines the position in the cycle of oscillation at =0.

Velocity is equal to rate of change of position. Hence the particle velocity
may be found by differentiating Eqn. 1.8:

d
v=£=uow cos (wt—) (1.9)

Similarly, particle acceleration may be found by differentiating Eqn. 1.9;
a=d£= —uow? sin (wt —¢) (1.10)

The significance of the negative sign in Eqn. 1.10 is that the particle is
decelerating as it moves away from its equilibrium position.

In this simple analysis, it has been assumed that the total energy stored
in the oscillating system remains constant. (The effect of energy dissipation
in such a system is discussed in Section 1.4.) The energy is stored entirely
in the kinetic energy of the particle when the spring is not stressed (i.e.
when u= 0) likewise, the energy is stored entirely in the potentlal energy
of the spring when the dlsplacement of the particle is maximum or mini-
mum (i.e. when v =0). At other times during the cycle, the energy is shared
between the kinetic and potential stores. At any time 7,

potential energy stored in spring .
- j s ull du=u2/2l (1.11)

kingtic energy stored in mass

=mv2[2 (1.12)
total energy stored in spring and mass
=ug?2{ =m(uow)?[2=e (1.13)

1.2 THE WAVE EQUATION

A wave is a disturbance, the position of which in space changes with time.

1.2.a Transverse Waves

For example, consider a long thin string (which is really a chain of particles),
fixed at one end. The other end is attached to a vibrator, so that it moves
with simple harmonic motion along a line perpendicular to the undisturbed
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position of the string. The vibrations move along the string: in this way,
energy is transmitted at a finite velocity. This type of vibration is called
a travelling wave. The situation is illustrated in Fig. 1.2. Figure 1.2(a)
represents the variation in displacement in space (where 2 is the distance)
at any instant in time z. The wavelength, A, is the z-distance between con-
secutive particles where the displacement amplitudes are identical. Figure
1.2(b) represents the variation in displacement in time at any particular
position in space 2. The period, 7, is the time which is required for the wave
to move forward a distance A. During the time 7, the wave completes one
cycle of oscillation. The frequency, f, of the wave is equal to the number of
cycles which pass through a given point in space in unit time. Thus:

f=1/r (1.14)

sy ke

00 e ¥ s
T
ik

.

F1c. 1.2 Transverse waves on a string. (a) Distribution in space’at time ¢; (b)
distribution in time at position 2.

The velocity, c, of the wave is equal to the distance travelled by the dis-
turbance in unit time; thus:
c=fA=Ar (1.15)

The kind of wave which occurs on a string is called a transverse wave,
because the particles oscillate in a direction normal to the direction in
which the wave travels.

Next, consider the displacement of a very short section of the string, as
illustrated in Fig. 1.3. The section is under constant tension i, and has a

length 8/ given by

hence

812 =522+ du?

5l= {1 + (8_")2}1’ %52
‘ 8z
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and if 8u/8z is very small, 8/=28z. The force acting in the u-direction on the
element of string is equal to {sin (6+86) —sin 6}; and, if 6 is very small,
sin 6=tan 6=(8u/62);, where the subscript indicates the point at which the
corresponding gradient is evaluated. Hence, the force is equal to

().~ (32) s oo

because the difference between the two terms in the bracket on the left-
hand side of the expansion defines the differential coefficient of the gradnent
ou[0z times the space interval 8z.

} e o f w
U 7t ;

Q@ jo

z z+ 8z

Z —>

F1c. 1.3 An element of a string supporting a transverse wave.

If 7 is the mass per unit length of the string, then, according to Newton’s
second law of motion:

2u %u
¥ o 032 o o o
and hence
d2u 1 9%
A ey (1.16)

where c=(y/1)}/2, which has dimensions [L7T-1] and is a velocity. Equation
1.16 is a wave equation. It relates the second differential of the participle
displacement with respect to distance, to the acceleration of a simple
harmonic oscillator. The significance of this is discussed in Section 1.3.

1.2.b Longitudinal Waves

Equation 1.16 was derived for transverse waves. Another wave mode occurs
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when' the particles* in a medium supporting a wave oscillate backwards
and forwards in the same direction as that in which the wave is travelling.
This is called a longitudinal wave. The oscillation of the particles sets up
periodic variations in pressure within the supporting medium and a
pressure wave travels through the medium as neighbouring particles
interact with each other, as illustrated in Fig. 1.4. Consider an unlimited
liquid within which a plane is subjected to simple harmonic motion. (Non-
viscous fluids cannot support shear stress, and so transverse waves cannot
be generated.) The situation is illustrated in Fig. 1.5, which shows a small
element of the liquid. In Fig. 1.5(a) the element is in equilibrium: it has

/\ /_\' 7\ A/\ :Z’?s'J;SLim
VAVATAYAV
T 2

———— Distance in direction of wave propagation

Penod

/\ /\— A /\ 5?3.':':;“",
TV VU

Time during passage of wave

Fic. 1.4 Longitudinal waves in arf extensive medium. (a) Particle displacement
amplitude and particle spacing at time ¢: these are the distributions in space; (b)
particle displacement amplitude at position z: this is the distribution in time.

length 8z, cross-sectional area S, and density p. Figure 1.5(b) shows the
element when subjected to longitudinal forces in simple harmonic motion:
the out-of-balance of the forces on the opposite surfaces of the element is
represented by a force 8F on the right-hand surface. This force produces
a displacement of #+8u in the z-position of the right-hand surface. There
is a gradient of force across the element; this is approximately linear
Because the element is small, and it is equal to 9F[8z. Therefore,

S§F= 91: 52 (1.17)

#In this context, a particle is a volume element which is large enough to contain
many millions of molecules, so that it is continuous with its surroundings; but it
is so small that quantities variable within the medium (such as displacement
amplitude) are constant within the particle.
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According to Hooke’s law,
ou
F=KS 5% (1.18)
where K is the bulk modulus of the liquid; so that
oF 2u z
= KS 528 (1.19)
Area S
/)
(a)
7/
z . 2+ 82

— u [ — u + S |<—

Fic. 1.5 An element of a medium. (a) In equilibrium; (b) in Qimple harmonic
motion.

The mass of the element is pS8z and its acceleration is given, to a close
approximation, by ¢%u/dt2. According to Newton’s second law of motion,
and substituting from Eqn. 1.19 in Eqn. 1.17,

u 2u
KS 72t 8z =pSdz %

and hence
2u_1 2%
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where c¢=(K/p)\/2. Equaﬁon 1.20 is the wave equation for longitudinal
waves; it is identical in form to the Eqn. 1.16 which is the wave equation
for transverse waves. Its significance is discussed in Section 1.3.

1.3 SOLUTION OF THE WAVE EQUATION

The wave equation, as expressed in Eqns. 1.16 and 1.20, is satisfied by a
function ¢ of the form
u=§(ct—2) : (1.21)

If ¢’ represents the differentiation of u with respect to (ct— 2),

%= —£(ct—3), and %"f £'(ct—3)
also
%Et =cf(ct—2), and Sa:—:, =c2£"(ct—2)
hence
1 2u_1 02
722 o

By definition, % is a simple harmonic displacement, and its motion at
z=0 is described by Eqn. 1.8. An appropriate choice of function in Eqn.
1.21 gives:
: u=ug sin {(27[X)(ct—2)} (1.22)

The quantity 2=/A is called the wave number, k. The physical meaning of
Eqn. 1.22 is that ¢, as defined in the various wave equations, is the velocity
at which the wave travels along the 2-direction; and the wave generated
by a simple harmonic oscillator is a sine wave.

It follows that the significance of the wave equations is that:

Eqn. 1.16: transverse waves travel along a string at a velocity
c= (gl - (1.23)
Eqn. 1.20: longitudinal wave; travel in a medium at a velocity
e=(Klppn (1.24
Some typical values of longitudinal wave velocity in non-biological mater-

ials are given in Table 1.1. The variation with temperature of the velocity
in water is shown in Fig. 1.6.
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Fi1c. 1.6 Variation of prdpagation velocity with temperature in water. (Data of

'~ Grosso and Mader, 1972.)

V1.4 DAMPED SIMPLE HARMONIC MOTION

In the lossless system discussed in Section 1.1, the peak displacement ug
of the particle is constant. However, in practice such an ideal system
cannot be realised, and energy is dissipated by processes such as friction,
or imperfect elasticity. This results in an additional force, which is
generally proportional to the velocity of the particle, so that Eqn. 1.3 must
be modified thus:

Z::m+d r+2u 0. (1.25)

where 7 is a constant with the dimensions of force pei unit velocity.
Equation 1.25 can be solved by putting u= Ke*; it follows that du/dt—
aKe“ and dzu/dtz—a’Ke“‘ Hence:

Kewt(ma?+ra+1/0)=0  (1.26)



