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Introduction

The theory of random matrices has proven to have a wide reach into many
areas of mathematics, physics, and statistics, and there are many excellent books
on the topic. The book of Mehta [61] has become a classic for anyone interested
in the subject, and several excellent books on random matrices have appeared in
more recent years: [4] by Bai and Silverstein; [3] by Anderson, Guionnet, and
Zeitouni; [42] by Forrester; [66] by Pastur and Shcherbina; the CRM volume of
lectures [43] edited by Harnad; [73] by Tao; and the Oxford handbook on random
matrix theory [1] edited by Akemann, Baik, and Di Francesco. See also the reviews
[34] by Di Francesco, Ginsparg, and Zinn-Justin; the ones in the MSRI volume [12],
edited by Bleher and Its; [33] by Di Francesco; and the forthcoming book [38] of
Eynard. These books and reviews vary in scope and perspective, and they present
different approaches to random matrices and their applications to combinatorics,
statistics, and physics. In this book we outline a connection from random matrices
to the six-vertex model of statistical physics. In particular, this model is related
to the unitary matrix ensembles, which are among the most widely studied of the
matrix ensembles. For unitary ensembles there is a direct connection to orthogonal
polynomials on the real line, and the asymptotics of partition functions as well
as local spectral statistits can be studied using the Riemann—Hilbert approach.
The focus of this book is a description of the Riemann—Hilbert method for both
continuous and discrete orthogonal polynomials, and applications of this approach
to matrix models as well as to the six-vertex model.

The Riemann - Hilbert approach to ensembles of random matrices was initi-
ated in the late 1990s in the papers [10] by Bleher and Its, and [29,30] by Deift,
Kriecherbauer, McLaughlin, Venakides, and Zhou, and it became a powerful tool
in the theory of universality and critical phenomena in random matrices. In par-
ticular, the Riemann - Hilbert method allows for an asymptotic analysis of a wide
class of orthogonal polynomials, which was a vital ingredient in the proof of uni-
versality of scaling limits for correlations of eigenvalues. The main ideas of the
Riemann - Hilbert approach to orthogonal polynomials and random matrices are
nicely described in the the lectures [27] by Deift. Chapter 2 of this book is adapted
from the paper [29].

The six-vertex model dates back to Slater [69] in the early 1940s, and is one of
the integrable models of 2-d statistical physics, see [7,67]. The domain wall bound-
ary conditions considered in this book were introduced by Korepin [50] in 1982.
In that paper certain recursions for the partition function were derived. Subse-
quently these recursions were used by Izergin [46] to give an explicit determinantal
formula for the partition function. This formula is the basis for the asymptotic
analysis described in this book, and is known as the Izergin - Korepin formula.
The relation of the Izergin - Korepin formula to ensembles of random matrices and
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orthogonal polynomials was discovered and used by Zinn-Justin [78,79]. For cer-
tain values of the parameters, the relevant orthogonal polynomials are classical. In
these cases, the Izergin - Korepin formula was used by Colomo and Pronko [23-26]
to give expressions for the 1-, 2-, and 3-enumeration of alternating sign matrices.
Outside of these special cases the orthogonal polynomials are not classical, and
the Riemann — Hilbert approach was employed in a series of papers by Bleher and
coauthors [8,9,13-15].
The general outline for the book is as follows:

e In Chapter 1 we introduce the unitary matrix ensembles and describe their
connections to orthogonal polynomials and integrable systems.

e In Chapter 2 we discuss the Riemann—Hilbert (RH) approach to random
matrix ensembles, adapted from the original approach of the paper [29] and the
book [27]. We give general formulas for asymptotics of recurrence coefficients for
orthogonal polynomials, and give a proof of the universality of the sine and Airy
kernels in the bulk and at the edge, respectively, of the spectrum.

e In Chapter 3 we consider an extension of the RH approach to discrete or-
thogonal polynomials on an infinite lattice, which was originally developed in the
book [5] of Baik, Kriecherbauer, McLaughlin, and Miller for discrete orthogonal
polynomials on a finite lattice, and then extended to an infinite lattice in the paper
[16] by Bleher and Liechty. Again we give general formulas for asymptotics of recur-
rence coefficients. Universality of the local correlations in the discrete orthogonal
polynomial ensemble is discussed, and we give a proof of the scaling limit of the
correlation kernel at the point which separates a band from a saturated region.

e In Chapter 4 we introduce the six vertex model with with domain wall bound-
ary conditions.

e In Chapter 5 we derive the Izergin — Korepin formula for the partition function
of the six vertex model with with domain wall boundary conditions. The proof is
based on the Yang - Baxter equations, and we follow the elegant approach of the
papers [51,55].

e In Chapters 6 - 8 we obtain the large n asymptotic formulas for the partition
function in different phase regions on the phase diagram. These chapters follow the
works [9,13,15]. The methods of Chapters 2 and 3 are applied, and all details of
the analysis are presented.

e In Chapter 9 we discuss the asymptotics of the partition function on the
critical lines between the phases, as well as the phase transitions. The results of
the papers (8, 14] for the partition function on the critical lines are discussed, but
we do not present detailed proofs in this book.

Acknowledgements. In part, this book is based on lectures which the first author
gave at different universities: Indiana University — Purdue University Indianapolis;
Centre de recherches mathématiques, Montréal; Katholieke Universiteit of Leuven,
Belgium; and the National University of Singapore, Singapore. The initial work
on this book was done during the semester long program Random Matriz Theory,
Interacting Particle Systems and Integrable Systems at the Mathematical Sciences
Research Institute (MSRI) in Berkeley, California, in the fall of 2010. We would like
to thank MSRI and the organizers of that program, Jinho Baik, Alexei Borodin,
Percy Deift, Alice Guionnet, Craig Tracy, and Pierre van Moerbeke, for allowing us
the opportunity to be there. We would also like to thank various people for useful
comments and discussions over the years, including Thomas Bothner, Percy Deift,



INTRODUCTION ix

Bertrand Eynard, John Harnad, Alexander Its, Vladimir Korepin, Arno Kuijlaars,
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CHAPTER 1

Unitary Matrix Ensembles

1.1. Unitary ensemble with real analytic interaction

Recall that a matrix M is Hermitian if M = M* (where M* = MT), so that
My; = Mji. Of course, any Hermitian matrix must have real entries along the
diagonal, whereas the entries below the diagonal are completely determined by the
entries above the diagonal. It follows that, in order to count the real dimension of
the space of N x N Hermitian matrices, we should count the number of entries along
the diagonal, IV, and twice the number of entries above the diagonal to account for
real and imaginary parts. Thus, if Hy is the space of N x N Hermitian matrices,
then its real dimension is equal to

(1.1.1) dimHy =N+2[1+2+---+N—-1=N+ NN —-1)= N>
The space Hp is a real Hilbert space with respect to the scalar product

N
(1.12)  (L,M)=ReTr(LM") =Y Re(LjxM;)

Jk=1

N
L;;Mj; +2) [(Re Ljk)(Re Mji) + (Im Lji) (Im Mj)].

j=1 Gk

I
M=

Being a subspace of the space of N x N matrices with complex entries, Hy embeds
naturally into CN*. The Euclidean distance inherited from this embedding is given
as

N 1/2
(113) aise(2,80) = | = 311 = (3 [Le — Ml
G k=1
1/2
(zu:” My 423 MLk — My )
i>k

The scalar product (L, M) and the distance dist(L, M) are invariant with respect
to the conjugation by any unitary matrix U € U(N),
(1.1.4) M - U'MU, U e U(N).

Let dM be the N?-dimensional Lebesgue measure,

N N
(1.1.5) dM =[] dM;; [] d Re M d Im M.
=1 ik
We will consider the probability distribution on Hpy given by
1
(1.1.6) dun(M) = — e NTVIM) gpr,
ZN
1
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where V(z) is a real analytic function satisfying the growth condition that

Vix)

(1.1.7) —log(|m12 1)

— 400 as |z| = oc.

This growth condition is a technical condition for subsequent analysis. Indeed, the
reader may simply think of V' as a polynomial of even degree and with positive
leading coefficient, in which case it is clear what is meant by the matrix V(M)
n (1.1.6). If V is not a polynomial, then the matrix V(M) can be understood
by applying V to the spectrum of M. That is, M can be diagonalized as M =
UAU*, where U is a unitary matrix and A = diag(A;, Ag, ..., Ax) is the matrix of
eigenvalues, and we can then define

(1.1.8) V(M) = Udiag(V(\), V(A2), ... VOAN))U

Notice then that Tr V(M) is invariant with respect to unitary conjugations given
n (1.1.4). Since the distance dist(L, M) induces the measure 2VV=1/2dA\f on
Hy, the Lebesgue measure dM is invariant with respect to unitary conjugations
(1.1.4) as well. Tt follows that the distribution du (M) is invariant with respect to
any unitary conjugation (1.1.4), hence the name of the ensemble. The normalizing
constant Zp, called the partition function, is defined such that py is a probability
measure. That is, it is the matrix integral

(1.1.9) ZN=/ g~ N V(M) qpr,
HnN

Example (Gaussian unitary ensemble). For V(M) = M? the measure
1y is the probability distribution of the Gaussian unitary ensemble (GUE). This
is the oldest and most well known of the invariant matrix ensembles. In this case,

(1.1.10) TrV(M)=TrM? = ZA[kJAIJk—ZA 2> M,
j.k=1 i>k
hence
GUE -NM? - z ;
(1.1.11) duSVE(M) = ZGUE H VML) TT (e72VIMaA1") d,
>k

so that the matrix elements in GUE are independent Gaussian random variables.
The partition function of GUE is evaluated as

(1.1.12) GUE / —NMfJ) H(e—QNWJHz)dM
H

NJl >k

Nz N/2 - N(N~1)/2_ - NZ%/2 1 N(N-1)/2
AN 2N AN 2 '

The GUE is somewhat special in that it lies at the intersection of the invariant
ensembles, which are invariant with respect to some sort of matrix conjugation (in
this case unitary conjugation), and the Wigner ensembles, for which the matrix
entries are independent. If the function V(z) is not quadratic, then the matrix
entries become dependent.
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1.2. Ensemble of eigenvalues

The central topic in random matrix theory is the distribution of the eigenvalues
of a random matrix. We can write a formula for the distribution of eigenvalues of
an Hermitian matrix M from distribution (1.1.6) by writing M in terms of its
eigenvalues and eigenvectors, so that M = UAU™, where U is a unitary matrix (of
eigenvectors) and A = diag(A1, Aa,..., An) is the matrix of eigenvalues. In order
to make this map one-to-one, let us consider A = (A1, A2,...,An) to be ordered, so
that Ay < Ay € -+ < An. In fact, dropping a set of measure zero, we can assume

Aj # Ak for j # k, and thus consider A in the Weyl chamber

(1.2.1) A< A < - < AN

Also, instead of U € U(N) we may consider matrix UD, where
D = diag(e', ..., e¥") € D(N)

is any diagonal unitary matrix. Consider therefore the equivalence class

(1.2.2) U ={UD,D e D(N)},
and the homogeneous space [~J(N ) of the equivalence classes U. Then the map
(1.2.3) (U,A)—~ M =UANU*, UE€eU,
is one-to-one, and we may consider its Jacobian
(1.2.4) -
dU dA

where dU is the projection of the Haar measure on U(N) onto U(N) and dA =
d\; ---dAy. Since dM is invariant with respect to the unitary conjugations, and
dU is invariant with respect to the unitary left shifts, the Jacobian J does not
depend on U. Its dependence on A = (A1, ..., Ay) is described as follows.

Proposition 1.2.1 (Wey!’s formula). For some constant Cn > 0,

(1.2.5) J=Cn [TIM =A%
J<k

~PROOF. Since J does not depend on l~/, it suffices to evaluate J~at U=1,i.e.,
at U = I = D(N). In a small neighborhood of I, the elements U are uniquely

represented by unitary matrices U = e, where A* = —A. As A — 0,
(1.2.6) U=el=T+A+0(4%, U'=e?=I-A+0(4%,
and
(1.2.7) M =UAU "= A+ [A, A + O(A?),
so that
(1.2.8) M = X\ + O(A?), M = (Aj — X\)Aqij + O(A?%), i<
This implies that at A = 0,

OM;; OM;;
(129 o a0

Y =0, L= (Aj — N)dikdjr, 1<,

Nk 0An
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hence the Jacobian matrix Vy 4 M is diagonal and its determinant is equal to

(1.2.10) J =[] =Ml
i<k
Since at A =0,
(1.2.11) dU = CnydA4, Cx >0,
formula (1.2.5) follows. O

It follows that, if we are interested only in eigenvalues, the eigenvectors may be
integrated out, and we find that the distribution of eigenvalues of M with respect
to the ensemble iy is given as

N
1
(1.2.12) dpn(A\) = =— H(’\J _ )\k)2 H = NV(X) d),
ZN >k j=1
where
(1.2.13) Zn _/H (Aj — Ax) H NV AN, dA =dAg - -dAy.
i>k 7=1

Since we have considered A in the Weyl chamber (1.2.1), this gives a measure on
ordered eigenvalues, and the integral (1.2.13) is over the Weyl chamber. However,
clearly (1.2.12) is symmetric in A, and therefore the measure can be lifted to an
ensemble of unordered eigenvalues, where the integral in (1.2.13) is then understood
to be over RV,

Notice that

~ Oy Vol(U(N
(1.2.14) T = ZNW.

and thus the ratio Z ~/Zn does not depend on the potential V. We can calculate
this ratio in the case of the GUE, and the result will hold for any unitary ensemble
given by (1.1.6). Indeed, for GUE,

N
1 0 TT _ A2
(1.2.15) duR"P ) = =555 [Ty =2 [T e ax,
ZN"" ik j
where
(1.2.16) ZGUF /H(A o )\k)ZH N)\
1>k
The constant Zg’,UE is a Selberg integral, and its exact value is
5 N
~GUE __ (QW)N/Z
(1.2.17) zZs =GN I1 -
k=1

see, e.g., [61]. A proof of formula (1.2.17) from the discrete string equations for
orthogonal polynomials is given subsequently in Section 1.3. We therefore have
that the partition functions Zy and Zy are related as

7 7ZGUE 1 N
(1.2.18) N _ZN _ - : H“
g ZsLE aN(N—1)/2 P
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One of the main problems in random matrix theory is to evaluate the large N
asymptotics of the partition function Zn and of the correlations between eigenval-
ues.
From (1.2.12), the joint probability density function for the eigenvalues is given
by
_ N
(1.2.19) pn(T1, ... ZN) = 25 H(IJ — )2 H e~ NV (),
1>k i=1
Integrating out (N —m) variables, we obtain the marginal probability density func-
tion for m eigenvalues,

(1.2.20) pmN(Il,...,xm):/ pN(z1, ..., 2N )dTmir - -dy.
RN=-m
The m-point correlation function is then defined as
N!
(1221) RynN(Il.--‘,l'm) = mpmN(xl,...,xm),

see, e.g., [2,3, 36,61]. Remarkably, these correlation functions can all be expressed
in terms of a system of orthogonal polynomials. Let {P(z)}7, be the system of
monic orthogonal polynomials defined from the orthogonality condition

o>

(1.2.22) / R] (Jf)Pk(IE)e_Nv(x) de= hk(5jkx
—

for some system of normalizing constants {hy}3>,. Existence and uniqueness of

these polynomials is guaranteed by condition (1.1.7). Define also the functions

(1.2.23) Yr(z) = #pk(x)e-NV(:r)/Q’

k
which form an orthonormal basis in L?(R'). We have the following proposition.

Proposition 1.2.2. The correlation function (1.2.21) has the determinantal

form
(1.2.24) Ry (21, 2n) = det (K (2, 20)) 0y
where
N-1
(1.2.25) KEn(z,y) = ) ¥a(@)¥n(y).
n=0

Furthermore, the partition function Zn can be written in terms of the orthogonal
polynomials (1.2.22) as

N-1
(1.2.26) Zn =N ks

j=0

An ensemble whose correlations can be expressed by such a determinantal for-

mula is called a determinantal point process, see [18,20,44,45]. In particular notice
that the one point correlation function enables us to write the density of eigenvalues
on the real line, which we notate px in the simple form
_ Rin(z)  Kn(z,7)
== = N

(1.2.27) pn(z)
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Before proving Proposition 1.2.2, let us point out some unique properties of the
function K. Observe that K is the kernel of the projection operator onto the
N-dimensional space generated by the first N functions ¢,, n = 0,..., N — 1.
The function Ky(x,y) is called the reproducing kernel and it has the following

properties:
/ Ky(z,z)dz = N,
R

(1.2.28)
/R K (2,9)Kn(y, 2)dy = K(z, 2).

Indeed, by (1.2.25),

N-1 N—
(1.2.29) /KN z,z)dxr = Z / ¥;(z)? Z 1 =N,
J=0 J=0

R

and

N—
(1.2.30) /KN z,y)Kn(y, 2 Z / (y)r(y)r(2) dy

= K(z,2).

I
||'[\/] =

Let us now prove formula (1.2.26) for the partition function. Recall the formula
for the Vandermonde determinant,

N
—11N
(1.2.31) det[a:; l]j,kzl = H (zk — zj).
JTk_;l
j<k
The main point in the proof of (1.2.26) is that the function py(z;,...,zn) in the

integrand of (1.2.16) is the product of the square of the Vandermonde determinant
and factors which are independent and identical on each of the coordinates z;. The
form of the Vandermonde matrix and multilinearity of the determinant function
allow us to replace the jth row of the Vandermonde matrix with any monic poly-
nomial of degree (j — 1). In particular, we may use the orthogonal polynomials
described in (1.2.22), so that

(1.2.32) Zy
:/ pn(zy, ... ,xy)dey - doy
RN
1 1 1 2
T Ty svs BN N
% z3 a3 —NV(z
= dCt 2] ) N H ) dIJ_
RN . : : ol
g1 N1 N1



