An Introduction to Programming

Julien Hennefeld - Charles Burchard

Using C++

An Introduction to Programming

Julien Hennefeld
Brooklyn College of the City University of New York

Charles Burchard

Penn State Erie—The Behrend College

@@
PWS Publishing Company

I@P An International Thomson Publishing Company

Boston * Albany * Bonn ¢ Cincinnati ®* London * Melbourne ® Mexico City
New York ¢ Paris * San Francisco ® Singapore * Tokyo * Toronto * Washington

PWS Publishing Company

Copyright © 1998 by PWS Publishing Company,
a division of International Thomson Publishing, Inc.

All rights reserved. No part of this book may be
reproduced, stored in a retrieval system, or transmitted by
any means—electronic, mechanical, photocopying,
recording, or otherwise—without prior written permis-
sion of PWS Publishing Company.

I(T)p®
International Thomson Publishing
The trademark ITP is used under license.

Printed in the United States of America.

00 01 —10 987 65 4

Sponsoring Editor: David Dietz

Production Editor: Andrea Goldman

Manufacturing Coordinator: Andrew Christensen

Marketing Manager: Nathan Wilbur

Editorial Assistant: Kathryn Schooling

Copyeditors: Andrea Goldman, Lorretta Palagi

Composition/Art: The PRD Group

Cover Design: Peter Blaiwas

Interior Design: Sandra Rigney

Text Printer and Binder: R.R. Donnelley & Sons—
Crawfordsville

Cover Printer: Phoenix Color Corp.

This book is printed on recycled,
acid-free paper.

Library of Congress Cataloging-in-Publication-Data

Hennefeld, Julien O.
Using C++: an introduction to programming /
Julien Hennefeld, Charles. Burchard.
p. cm.
Includes index.
ISBN 0-534-95591-6
1. C++ (Computer program language) 1.
Burchard, Charles. 11 Title.
QA76.73.C153H457 1998
005.133—dc21 97-31817
CIP

20 Park Plaza, Boston, MA 021164324

For more information, contact:
PWS Publishing Company

20 Park Plaza

Boston, MA 02116

International Thomson Publishing Europe
Berkshire House

168-173 High Holborn

London WCI1V 7AA

England

Thomas Nelson Australia
102 Dodds Street

South Melbourne, 3205
Victoria, Australia

Nelson Canada

1120 Birchmont Road
Scarborough, Ontario
Canada M1K 5G4

International Thomson Editores
Campos Eliseos 385, Piso 7
Col. Polanco

11560 Mexico D.F., Mexico

International Thomson Publishing GmbH
Konigswinterer Strasse 418
53227 Bonn, Germany

nternational Thomson Publishing Asia
221 Henderson Road

#05-10 Henderson Building

Singapore 0315

International Thomson Publishing Japan
Hirakawacho Kyowa Building, 31

2-2-1 Hirakawacho

Chiyoda-ku, Tokyo 102

Japan

Using C++

I would like to thank my wife, Marianne, my children, Maggie and

Dan, and my canine associate, Zoe, for bearing with me and

sustaining me during the difficult stretches of work on the book.
Julien Hennefeld

I would like to thank my wife, Marge, for “running the ship” while I
was off on this venture, and my children, Sarah and Emmy, for
providing some laughs when I was taking it all too seriously.

: Chuck Burchard

Preface

Intended Audience

This book can be used in a number of different types of C+ + programming
courses. Its clarity, readability, and wealth of illustrative examples make
it especially suitable for use in a CS1 course for beginning programmers.
Concisely written, the book ultimately is comprehensive and includes
more material than can be covered in a single semester by beginners.
Thus, it may be used in a single-semester, faster-paced course for com-
puter science majors or students with prior programming experience, or
it may be used in a two-semester sequence for beginners and nonmajors.
Since it covers almost all of the material recommended for the Advanced
Placement A and B exams, it is especially suitable for secondary-level
courses. Moreover, it can be used both in courses that limit coverage to
procedural C++ and in courses that will eventually cover a significant
amount of the object-oriented features of the language.

Content Approach

Basics

At the beginning, we teach C++ as a “better C,” because it is an easier
and more convenient language in which to write basic programs. We
strongly emphasize control structures and writing and designing with
functions, and encourage students to build onto a library of useful func-
tions that they can reuse. We discuss problem solving and program
design using a four-step method, and make frequent use of pseudocode
and top-down development. Because extended, detailed discussions of
program development can work well in the classroom but become tedious

Xv

Preface

and visually overwhelming on the printed page, we keep discussions of
program development focused and streamlined.

Should Objects Be Taught Early?

Currently, the question of how early to introduce object orientation in the
first course is hotly debated. We believe that it is important for students to
become proficient in applying and implementing C+ + classes by the end
of a two-semester sequence, but our experience has been that discussing
the syntax for declaring and implementing C++ classes too early con-
fuses students more than it enlightens them. After all, C++ is a hybrid
language, and using its complicated object-oriented overlay effectively
presupposes quite a bit of mastery of its procedural features. Further-
more, object orientation’s extensive overhead is geared toward safely
handling the complexity of large programming projects. For many short
and medium-size programming problems, object orientation is not appro-
priate and, when applied to such problems, does not give a convincing
introduction to the power and usefulness of object-oriented program-
ming. Further, we are convinced that object-oriented design is a difficult
topic that cannot be taught effectively until students have had ample
practice in using and implementing objects.

Early Approach to Objects

We do believe, however, that it is possible to give students a meaningful
perspective on the role and importance of object orientation at the outset.
Consequently, in Chapter 1, we present a general discussion of software
engineering issues with a comparison of how the procedural and object-
oriented paradigms deal with the complexity of large-scale programming
projects. In later chapters, we introduce students to objects gradually,
by showing them how to use some powerful, predefined classes when
the need for these classes arises and is pedagogically appropriate. (These
classes are discussed in detail later in this preface.)

Treatment of Class Declaration
and Implementation

In regard to teaching about the declaration and implementation of
classes, we have taken great care to avoid introducing too many syntactic
and conceptual topics at one time. Further, we introduce a given topic,
not merely for the sake of coverage but because the particular class under
discussion provides real motivation for the topic. Our approach is to split
the initial coverage of class declarations and implementations into two
closely related chapters. In Chapter 18, we begin exploring important

Preface xvii

syntactic and conceptual issues in object orientation by showing stu-
dents how to write client programs based on reading the declaration
sections of four different classes. By deferring the details of implementing
these classes, we are able to provide more substantive examples of classes
and, consequently, more effectively demonstrate the power of object ori-
entation. Then, in Chapter 19, at which time students have had ample
practice in using classes and reading their declarations, and have an
appreciation for the power they provide, we discuss how to implement
and modify the classes of Chapter 18. In Chapter 20, we give an informal
discussion of designing with objects by describing actual problems and
the kind of analysis and reasoning that an experienced programmer
might apply to the problem. There are several classes in Chapter 20 that
students will work with in the exercises.

Use of Standard Predefined Classes

The classes that we have targeted for students to use before any treatment
of class declaration and implementation are (1) a subset of the ANSI/
ISO Draft C++ Standard String class, which provides a far superior
alternative to char*; (2) the built-in ifstream, ofstream, istream, and
ostream classes required for file handling; (3) a subset of the ANSI/ISO
Draft C++ Standard Vector class, which provides a safe, more powerful
alternative to arrays; and (4) a Matrix, or two-dimensional Vector, class.
Although we decided to use the previously mentioned classes primarily
because we believe they make for the clearest and best pedagogy, our
approach also strongly reflects recent trends in C+ + instructional guide-
lines and is consistent with an emerging international standard for
C+ +. First, using these classes provides the student with a suitable level
of prepackaged programming power. Second, the String, Vector, and
Matrix classes are specified by Educational Testing Service’s Advanced
Placement Computer Science (APCS) Committee for the AP Computer
Science exams. (We anticipate that these APCS guidelines will have a
major impact on the teaching of C+ + in introductory courses at all levels.)
Third, the String and Vector classes are clearly specified as part of the
ANSI/ISO Draft C++ Standard and have already been implemented by
several commercial C++ vendors.

Vectors Versus Arrays

Although we recommend the use of vectors as a safer, more convenient
alternative to arrays, we introduce arrays and discuss their shortcomings
before we cover vectors, and we stress that arrays and vectors have
far more similarities than differences. Further, we give guidelines for
rewriting programs that use vectors as programs that use arrays. Finally,

xviii Preface

the implementation of the Vector class “over top of” arrays is developed
fully later in the book so that students can eventually see the close
connection between the two.

Order and Flexibility of Coverage of Topics

To accommodate a variety of different preferences, we have built a reason-
able amount of flexibility into the book by including titled paragraphs
that point out when it is possible, if so desired, to skip ahead to a related
topic in a later chapter. A few examples are listed:

® We did not want to introduce all the selection structures at once in

Chapter 4, so the switch statement, which is not a necessity, is not
covered until Chapter 12. At the end of section Section 4.4, however,
we point out that it is possible to jump ahead to Section 12.1 for an
introduction to the switch statement.

We feel that the single most important programming topic in a first
course is functions. In C++, the taxonomy of function types and
variations is extensive. We discuss this through several chapters,
rather than attempt to cover too many function topics at once. In
particular, we have deferred a detailed treatment of reference parame-
ters until Chapter 9, rather than including them in Chapter 5, which
covers both void and value-returning functions with value parame-
ters. Section 5.7 briefly introduces reference parameters for use in
data input functions, but coverage of this section is optional.

Recursion is treated separately in Chapter 25 but introduced briefly
in Section 10.7, which gives a scenario for early coverage of recursion.

Sections 22.1 and 23.1-23.7 give a non-object-oriented treatment of
pointers and linked lists and can be covered, if desired, any time after
Chapter 13.

® Chapter 27 on inheritance can be covered any time after Chapter 19.

Pedagogical Approach

A common problem faced by instructors is finding a textbook that stu-
dents will actually read and understand so that more class time can be
devoted to clarification, elaboration, and integration of material, rather
than to “covering” basic material that students should have learned from
the book. Consequently, in writing Using C++, we have given serious
thought to how students actually assimilate technical material. Our goal
has been to make this book clear, concise, and focused by stripping down
the discussion to what is essential, since too much explanation can be

Exercises

Preface xix

just as bad as too little. Furthermore, we try to foster “active reading,”
by asking the reader, right in the body of the chapter, not just in the
Exercise section, either to determine the output of a sample program
fragment or to fill in one or two blank lines in a program whose purpose
has been described. This self-testing approach gives readers a basis for
determining whether they need to review material before progressing. It
also provides confidence-building reinforcement for correct responses.
Perhaps most important, it creates a framework that can facilitate the
readers’ active entry into the material.

We believe that rich exercise sets are a vital feature of any introductory
programming text. We provide three kinds of exercises in most chapters:

1. Short, objective “self-check” exercises that are designed to give
students feedback on key concepts and to demonstrate an im-
portant aspect of the material. These exercises give students the
kind of written practice that is often tested on exams.

2. Programming assignments whose length and level of difficulty
range from short to moderate. More than one of these can be
assigned for each chapter.

3. Longer, more difficult programming assignments that could be
used for individual or group projects.

Software Provided on the PWS Web Site

1. We provide two short library files, ourtools.h and myfuns.h, that
are used throughout the text. These files may be down loaded
from the following URL: http://www.pws.com/comsci.html.

a. ourtools.h provides the following:

= Simplified floating point output formatting To avoid
the syntactic baggage and confusing semantics of
setiosflags and public data members of ios such as
jos::fixed, etc., we provide the functions fixed_out,
scientific_out, and default_out, which are first intro-
duced in Chapter 3. The only one that we make extensive
use of is the fixed_out function.

= yvprn This is an output stream that is used as a “virtual
printer.” Its use is first discussed in Section 2.5. In the
early chapters preceding files and arrays, students can
use this output destination to process input from the

XX

Preface

monitor and send output, as a neatly formatted table, to
another destination. (The implementation of this stream
is trivial and is explained in Chapter 11.)

= AnAssert function This function, specified by the APCS
Commnittee, facilitates assertions with meaningful output
messages for assertions that fail.

b. myfuns.h contains implementations of a small number of
useful functions from early chapters. Students are encour-
aged to add other useful functions to this library.

2. We provide three library files, bastring.h, bavector.h, and
bamatrix.h, which contain, respectively, our implementations of
the String, Vector, and Matrix classes discussed earlier. (Com-
plete documentation can be found in bastring.doc, bavector.
doc, and bamatrix.doc in Appendix E.)

The five library files mentioned include all implementation code. This
avoids the issue of separate compilation and building projects. Although
these issues are important for large software projects, we believe that
the small size of programs (even the longer projects) in introductory
courses does not warrant the added complications of building projects
for separate compilation. Instructors who prefer to split interface (.h)
and implementation (.cpp) can have students do so as an exercise. Note,
however, that the Vector and Matrix classes are templated and, as such,
are not separately compilable by most compilers.

Many other Draft Standard compatible String and Vector classes are
also available via the Internet, and we will provide relevant information via
PWS’s Web site (http://www.pws.com/comsci.html). We anticipate that
these classes, if not the entire Draft Standard, will already be included
in many C++ compliers when the book goes to press.

Acknowledgments

We are very indebted to Eric Bach, Indira Malik, and Ray Morin for
suggesting revisions and for their help with proofreading and exercise
solutions.

We would also like to express our appreciation to the following review-
ers whose comments and criticisms helped shape the book:

= Don Bailes, East Tennessee State University

= Manuel E. Bermudez, University of Florida

= George Converse, Southern Oregon State College
= Ken Collier, Northern Arizona University

Preface xxi

= Charles Dierbach, Towson State University
= H. E. Dunsmore, Purdue University
= Mohamed Y. Eltoweissy, University of Pittsburgh-Johnstown
®= Susan L. Keenan, Columbus State University
® Anil Kini, Texas A & M University
= Thomas Kisko, University of Florida
= Daniel Ling, Okanagan University College
= Bonnie MacKellar, Western Connecticut State University
= John S. Mallozzi, Iona College
= Jeff McKinstry, Point Loma Nazarene College
= John Motil, California State University—Northridge
= Jean-Claude Ngatchou, Jersey City State College
= Rayno Niemi, Rochester Institute of Technology
®= Ingrid Russell, University of Hartford
= Janet M. Urlaub, Sinclair Community College
= David C. Wallace, Illinois State University
= Wayne Wallace, University of Wisconsin—-Oshlkosh
In addition, we would like to thank the following people at PWS: Mike
Sugarman, Executive Editor, for bringing about our collaboration; David

Dietz, our editor, for his superb job in guiding this project; and Andrea
Goldman for her excellent work as production editor.

Chuck Burchard
Julien Hennefeld

Contents

n Overview of Computers and Problem Solving 1

1.1 Computers and Computer Science 1
1.2 A Brief History of Computing Devices 6
1.3 Physical Components — Hardware 7
1.4 Writing Programs: A First View 10

1.5 Writing Programs: A Broader View 11

1.6 Procedural Versus Object-Oriented Programming 13
Exercises 16

a Introduction to C++ 17

2.1 A First Program 17
2.2 Punctuation and Style 23
2.3 Memory Cells and More on Assignments 26
2.4 |Interactive Programs 29
2.5 Using a Virtual Printer 32
Exercises 34 ‘

B More on the Elements of C++ 37

3.1 A First Look at Syntax Errors 37

3.2 The long Integer Data Type 39

3.3 The float and double Data Types 40

3.4 More on Numerical Operators 46

3.5 Arithmetic Assignment Operators as Abbreviations 49

viii

Contents

3.6 Named Constants 50
3.7 The char Data Type 53
3.8 Escape Sequences 55
3.9 AFirst Look at for Loops 56
3.10 Errors 59
Exercises 60

n Selection Using if and if..else

4.1 One-Way Selection Using if 65
4.2 Selecting from Two Alternatives Using if..else
4.3 The Logical Operators: And (&), Or (| |), Not (!)
4.4 Linear Multiway Selection Using a Nested

if Statement 76

4.5 More General Nested Selection 79

4.6 Problem Solving Applied to Writing Programs 82

Exercises 88

B Functions and Program Design

5.1 Some Predefined Functions and the Library
File math.h 97

5.2 Writing Value-Returning Functions 100

5.3 Program Design with Value-Returning Functions
5.4 Void Functions and Program Design 110

5.5 Functions Calling Other Functions 115

5.6 Using Function Stubs in Program Development 116

5.7 Reference Parameters and Data Input Functions
5.8 Saving and Reusing Your Own

User-Defined Functions 120
5.9 Other Useful Library Functions 122

Exercises 125

The String Data Type and More Output
Formatting

6.1 A First Look at String Variables 131

6.2 Numeric Output in Table Form 137

6.3 Tables with Strings in the First Column 139

6.4 cin and cout Are Streams 141

6.5 Reading Strings with Embedded Whitespace 143

65
67
71
95
107
119
131

Contents ix

6.6 A Program Design Involving Strings 146
Exercises 148

The Three C++ Looping Constructs 152

7.1 Some Preliminaries 153

7.2 while Loops and Fixed-Step Lists 154

7.3 for Loops and Fixed-Step Lists of Data Values 157

7.4 for Loops to Input Groups of Data 161

7.5 More on Designing for Loops 164

7.6 while Loops Versus do..while Loops 169

7.7 Sentinel-Controlled Data Input with while and
do..while Loops 170

7.8 Debugging Strategies 174
Exercises 177

B More on Loops 184

8.1 More General Task-Controlled Loops 184

8.2 Using do..while Loops to Trap Input Errors 191

8.3 Multiple Reasons for Loop Exit 192

8.4 Mid-Loop Exit Using the break Statement 195

8.5 Nested Loops 198

8.6 Fixed-Step Loops with Floating Point Step 203
Exercises 206

n Functions with Reference Parameters 213

9.1 Reference Parameters and Data Input Functions 214
9.2 Incrementing a Variable with a Function Call 218
9.3 More General Variable Updating by Using

Function Calls 221
9.4 Global Constants 225
9.5 Hand Tracing 228
9.6 Tracing with Order Switched 231

Exercises 232

m More on Functions 236

10.1 Documenting Parameters — IN, OUT, or IN-OUT 236
10.2 Structure Charts 238

Contents

10.3
10.4
10.5
10.6
10.7

m Text

11.1
11.2
113
114
11.5
11.6
11.7
11.8
11.9

11.10

Overloaded Functions 243

Functions with Default Arguments 246
Function Templates 249

Member Versus Free Functions 252
Recursive Functions 254

Exercises 254

Files and Streams

Creating a Text File = 257

Stream Variables Are Objects 258

Input from a File Stream: The Header Technique 259
Input from a File: The End-of-File Technique 264
How a Text File Is Stored 267

Entering the External File Identifier Interactively = 270
Protecting Against Bad Data 271

Sending Output to a File 272

Streams as Parameters (With a Brief Introduction

to Inheritance) 275

More Member Functions for Stream Input/Output 279

Exercises 282

m The switch and enum Statements

121
12.2
12.3

switch Statement Syntax 286

switch and Menu-Driven Programs 291
The enum Statement 294

Exercises 298

m Arrays and the Vector Class

13.1
13.2
13.3
134
13.5
13.6
13.7
13.8

Arrays 303

Shortcomings of Arrays 308

Vectors 310

Vectors of Counting Variables 316

Parallel Vectors 321

Hand Tracing with Vectors 324

Comparing Adjacent Cells (Useful Applications) 326
Resizing Vectors 328

Exercises 331

257

286

303

Contents

m Searching and Sorting

14.1
14.2
14.3
14.4
14.5
14.6

Linear Search 337

Binary Search (of a Sorted Vector) 338
Selection Sort 342

Bubble Sort 345

Inserting into a Sorted Vector 350
Template Functions for Sorting and Searching
Exercises 356

m Matrices

15.1
15.2
15.3

Matrix Syntax and Nested for Loops 361

Program Design with a Matrix and Parallel Vectors
Mathematical Operations on Matrices (For Students

Familiar with Matrix Algebra) 371
Exercises 373

m String Processing

16.1
16.2
16.3
16.4
16.5
16.6
16.7

Accessing Individual Characters 379

Some Applications 381

Automatic Resizing and Concatenation 387
String Searching 388

Manipulating Substrings 390

Defining Your Own String Functions 392
Using char Arrays (Optional) 395

Exercises 399

Structs

171
17.2
17.3
17.4
17.5

The Basics of Structs 403

Vectors of Structs 406

Nested Structs 410

Danger of Liberal Access to a Struct’s Data
Overloading the +, >>, and << Operators
for Fractions 412

Exercises 417

411

xi

336

361

378

403

