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Preface

Intended Audience

This book can be used in a number of different types of C+ + programming
courses. Its clarity, readability, and wealth of illustrative examples make
it especially suitable for use in a CS1 course for beginning programmers.
Concisely written, the book ultimately is comprehensive and includes
more material than can be covered in a single semester by beginners.
Thus, it may be used in a single-semester, faster-paced course for com-
puter science majors or students with prior programming experience, or
it may be used in a two-semester sequence for beginners and nonmajors.
Since it covers almost all of the material recommended for the Advanced
Placement A and B exams, it is especially suitable for secondary-level
courses. Moreover, it can be used both in courses that limit coverage to
procedural C++ and in courses that will eventually cover a significant
amount of the object-oriented features of the language.

Content Approach

Basics

At the beginning, we teach C++ as a “better C,” because it is an easier
and more convenient language in which to write basic programs. We
strongly emphasize control structures and writing and designing with
functions, and encourage students to build onto a library of useful func-
tions that they can reuse. We discuss problem solving and program
design using a four-step method, and make frequent use of pseudocode
and top-down development. Because extended, detailed discussions of
program development can work well in the classroom but become tedious

Xv
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and visually overwhelming on the printed page, we keep discussions of
program development focused and streamlined.

Should Objects Be Taught Early?

Currently, the question of how early to introduce object orientation in the
first course is hotly debated. We believe that it is important for students to
become proficient in applying and implementing C+ + classes by the end
of a two-semester sequence, but our experience has been that discussing
the syntax for declaring and implementing C++ classes too early con-
fuses students more than it enlightens them. After all, C++ is a hybrid
language, and using its complicated object-oriented overlay effectively
presupposes quite a bit of mastery of its procedural features. Further-
more, object orientation’s extensive overhead is geared toward safely
handling the complexity of large programming projects. For many short
and medium-size programming problems, object orientation is not appro-
priate and, when applied to such problems, does not give a convincing
introduction to the power and usefulness of object-oriented program-
ming. Further, we are convinced that object-oriented design is a difficult
topic that cannot be taught effectively until students have had ample
practice in using and implementing objects.

Early Approach to Objects

We do believe, however, that it is possible to give students a meaningful
perspective on the role and importance of object orientation at the outset.
Consequently, in Chapter 1, we present a general discussion of software
engineering issues with a comparison of how the procedural and object-
oriented paradigms deal with the complexity of large-scale programming
projects. In later chapters, we introduce students to objects gradually,
by showing them how to use some powerful, predefined classes when
the need for these classes arises and is pedagogically appropriate. (These
classes are discussed in detail later in this preface.)

Treatment of Class Declaration
and Implementation

In regard to teaching about the declaration and implementation of
classes, we have taken great care to avoid introducing too many syntactic
and conceptual topics at one time. Further, we introduce a given topic,
not merely for the sake of coverage but because the particular class under
discussion provides real motivation for the topic. Our approach is to split
the initial coverage of class declarations and implementations into two
closely related chapters. In Chapter 18, we begin exploring important
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syntactic and conceptual issues in object orientation by showing stu-
dents how to write client programs based on reading the declaration
sections of four different classes. By deferring the details of implementing
these classes, we are able to provide more substantive examples of classes
and, consequently, more effectively demonstrate the power of object ori-
entation. Then, in Chapter 19, at which time students have had ample
practice in using classes and reading their declarations, and have an
appreciation for the power they provide, we discuss how to implement
and modify the classes of Chapter 18. In Chapter 20, we give an informal
discussion of designing with objects by describing actual problems and
the kind of analysis and reasoning that an experienced programmer
might apply to the problem. There are several classes in Chapter 20 that
students will work with in the exercises.

Use of Standard Predefined Classes

The classes that we have targeted for students to use before any treatment
of class declaration and implementation are (1) a subset of the ANSI/
ISO Draft C++ Standard String class, which provides a far superior
alternative to char*; (2) the built-in ifstream, ofstream, istream, and
ostream classes required for file handling; (3) a subset of the ANSI/ISO
Draft C++ Standard Vector class, which provides a safe, more powerful
alternative to arrays; and (4) a Matrix, or two-dimensional Vector, class.
Although we decided to use the previously mentioned classes primarily
because we believe they make for the clearest and best pedagogy, our
approach also strongly reflects recent trends in C+ + instructional guide-
lines and is consistent with an emerging international standard for
C+ +. First, using these classes provides the student with a suitable level
of prepackaged programming power. Second, the String, Vector, and
Matrix classes are specified by Educational Testing Service’s Advanced
Placement Computer Science (APCS) Committee for the AP Computer
Science exams. (We anticipate that these APCS guidelines will have a
major impact on the teaching of C+ + in introductory courses at all levels.)
Third, the String and Vector classes are clearly specified as part of the
ANSI/ISO Draft C++ Standard and have already been implemented by
several commercial C++ vendors.

Vectors Versus Arrays

Although we recommend the use of vectors as a safer, more convenient
alternative to arrays, we introduce arrays and discuss their shortcomings
before we cover vectors, and we stress that arrays and vectors have
far more similarities than differences. Further, we give guidelines for
rewriting programs that use vectors as programs that use arrays. Finally,
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the implementation of the Vector class “over top of” arrays is developed
fully later in the book so that students can eventually see the close
connection between the two.

Order and Flexibility of Coverage of Topics

To accommodate a variety of different preferences, we have built a reason-
able amount of flexibility into the book by including titled paragraphs
that point out when it is possible, if so desired, to skip ahead to a related
topic in a later chapter. A few examples are listed:

®  We did not want to introduce all the selection structures at once in

Chapter 4, so the switch statement, which is not a necessity, is not
covered until Chapter 12. At the end of section Section 4.4, however,
we point out that it is possible to jump ahead to Section 12.1 for an
introduction to the switch statement.

We feel that the single most important programming topic in a first
course is functions. In C++, the taxonomy of function types and
variations is extensive. We discuss this through several chapters,
rather than attempt to cover too many function topics at once. In
particular, we have deferred a detailed treatment of reference parame-
ters until Chapter 9, rather than including them in Chapter 5, which
covers both void and value-returning functions with value parame-
ters. Section 5.7 briefly introduces reference parameters for use in
data input functions, but coverage of this section is optional.

Recursion is treated separately in Chapter 25 but introduced briefly
in Section 10.7, which gives a scenario for early coverage of recursion.

Sections 22.1 and 23.1-23.7 give a non-object-oriented treatment of
pointers and linked lists and can be covered, if desired, any time after
Chapter 13.

® Chapter 27 on inheritance can be covered any time after Chapter 19.

Pedagogical Approach

A common problem faced by instructors is finding a textbook that stu-
dents will actually read and understand so that more class time can be
devoted to clarification, elaboration, and integration of material, rather
than to “covering” basic material that students should have learned from
the book. Consequently, in writing Using C++, we have given serious
thought to how students actually assimilate technical material. Our goal
has been to make this book clear, concise, and focused by stripping down
the discussion to what is essential, since too much explanation can be
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just as bad as too little. Furthermore, we try to foster “active reading,”
by asking the reader, right in the body of the chapter, not just in the
Exercise section, either to determine the output of a sample program
fragment or to fill in one or two blank lines in a program whose purpose
has been described. This self-testing approach gives readers a basis for
determining whether they need to review material before progressing. It
also provides confidence-building reinforcement for correct responses.
Perhaps most important, it creates a framework that can facilitate the
readers’ active entry into the material.

We believe that rich exercise sets are a vital feature of any introductory
programming text. We provide three kinds of exercises in most chapters:

1. Short, objective “self-check” exercises that are designed to give
students feedback on key concepts and to demonstrate an im-
portant aspect of the material. These exercises give students the
kind of written practice that is often tested on exams.

2. Programming assignments whose length and level of difficulty
range from short to moderate. More than one of these can be
assigned for each chapter.

3. Longer, more difficult programming assignments that could be
used for individual or group projects.

Software Provided on the PWS Web Site

1. We provide two short library files, ourtools.h and myfuns.h, that
are used throughout the text. These files may be down loaded
from the following URL: http://www.pws.com/comsci.html.

a. ourtools.h provides the following:

=  Simplified floating point output formatting To avoid
the syntactic baggage and confusing semantics of
setiosflags and public data members of ios such as
jos::fixed, etc., we provide the functions fixed_out,
scientific_out, and default_out, which are first intro-
duced in Chapter 3. The only one that we make extensive
use of is the fixed_out function.

= yvprn This is an output stream that is used as a “virtual
printer.” Its use is first discussed in Section 2.5. In the
early chapters preceding files and arrays, students can
use this output destination to process input from the
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monitor and send output, as a neatly formatted table, to
another destination. (The implementation of this stream
is trivial and is explained in Chapter 11.)

= AnAssert function This function, specified by the APCS
Commnittee, facilitates assertions with meaningful output
messages for assertions that fail.

b. myfuns.h contains implementations of a small number of
useful functions from early chapters. Students are encour-
aged to add other useful functions to this library.

2. We provide three library files, bastring.h, bavector.h, and
bamatrix.h, which contain, respectively, our implementations of
the String, Vector, and Matrix classes discussed earlier. (Com-
plete documentation can be found in bastring.doc, bavector.
doc, and bamatrix.doc in Appendix E.)

The five library files mentioned include all implementation code. This
avoids the issue of separate compilation and building projects. Although
these issues are important for large software projects, we believe that
the small size of programs (even the longer projects) in introductory
courses does not warrant the added complications of building projects
for separate compilation. Instructors who prefer to split interface (.h)
and implementation (.cpp) can have students do so as an exercise. Note,
however, that the Vector and Matrix classes are templated and, as such,
are not separately compilable by most compilers.

Many other Draft Standard compatible String and Vector classes are
also available via the Internet, and we will provide relevant information via
PWS’s Web site (http://www.pws.com/comsci.html). We anticipate that
these classes, if not the entire Draft Standard, will already be included
in many C++ compliers when the book goes to press.
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