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Preface

In traditional treatments of the partial differential equations of mathe-
matical physics, particular stress is laid on solving boundary value problems
and initial-boundary value problems. The reasons are that these problems
were the natural ones to consider in classical physics, i.e., in fluid dynamics,
elasticity, plasticity, and electromagnetics. In quantum mechanics and
quantum field theory, however, one is usually not concerned with solving
boundary value problems, but with investigating the analytic properties of
solutions of partial differential equations.

The purpose of this monograph is to present a treatment of the analytic
theory of partial differential equations which will be accessible to applied
mathematicians, physicists, and quantum chemists. It is assumed that the
reader approaching this subject already has a knowledge of functions of one
complex variable, and an acquaintance with the equations of classical mathe-
matical physics. However, it is not assumed that the reader has any knowledge
of the theory of functions of several complex variables. In order to have the
book self-contained, an introductory chapter to the local theory of several
complex variables is included. The reader who has some acquaintance with
the subject may skip this chapter and refer back to it as needed.

The point of view taken in this monograph is essentially that of the theory
of integral operators. These procedures not only enable us to determine
solutions of partial differential equations, but to translate most of the
theorems of one and several complex variables to the theory of partial dif-
ferential equations.

In the last chapter my ““envelope method,” which is a generalization of the
idea used by Hadamard in the proof of his multiplication of singularities

vii



viii PREFACE

theorem, is applied to scattering problems in quantum mechanics and quan-
tum field theory.

The material presented in this monograph is based on seminars and lectures
given by me at Indiana University in connection with the Mathematical
Physics Program, and at the Institute for Fluid Dynamics and Applied
Mathematics, University of Maryland (1961-1965). T wish at this time to
express my gratitude to Professor Alexander Weinstein for providing a
pleasant and stimulating mathematical environment that encouraged my
individual research and study at the Institute.

I have greatly appreciated having partial financial support while writing
this book from the Air Force Office of Scientific Research under Grants
AFOSR 400-64 and AFOSR 1206-67 and from the National Science Founda-
tion under Grants NSF GP-3937, and NSF GP-5023.

I'am indebted to Professor Stefan Bergman for his reading of and comments
on certain sections of the manuscript, and for his encouragement to write this
book. I also wish to thank Dr. Henry C. Howard for a thorough reading of
the manuscript and many valuable suggestions. A careful proofreading of the
galleys was performed by my students, Te Lung Chang, Wilma Loudin,
Edward Newberger, and Thottathil Varughese.

Finally, I would like to thank Mrs. Katherine Smith, Mrs. Diane Boteler,
and Mrs. Judy Hupp who competently typed and prepared the manuscript.
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An introduction
to the theory

of several
complex variables

1. Fundamentals of the Local Theory

We begin by considering functions defined in an open region ® which is a
subset of the space of n complex variables C", i.e., the set of all n-tuples
(z4, ..., 2, Where z; = x; + iy, and X, y, € (— o0, +00). Unless otherwise
stated we shall assume that the function f(z) = f(zy, ..., z,) is single valued,
and that D is connected. Our definition of continuity is the usual one, i.e.,
f(z) is continuous at z° € D if given an arbitrary ¢ > 0 we have

|f(z,° + Azy, ..., 2,0 + Az,)) — f(z,° ..., 2,0)| <&

provided that the euclidean norm of Az is sufficiently small, i.e., |Az|, =
(|1Az(]* + - -+ + |Az,|*)"? < 8(2). If §(z) is independent of z for all z € D then
we say f(z) is uniformly continuous in D.

Definition A complex-valued function f(z) defined in a domain D contained
in the space of n-complex variables is said to be Weierstrass holomorphic in the
domain D if for each point a € ® the function can be expanded as a power
series of the form

0

f@ =Y culz — a)"

m=0

o0

CmyoemZ1 — @)™ (24 — @)™, (1.1.1)
my, ..., mp=0

1



2 1. THE THEORY OF SEVERAL COMPLEX VARIABLES

which converges in some nonvoid neighborhood of a. (The point (z, ..., z,) =
(ay, ..., a,) is referred to as the center of the power series expansion.)

We now show that if the n-fold series (1.1.1) converges in some order at
the point z = z° # a it converges absolutely and uniformly to the same value
independent of the order of summation for all z that are contained in the
“ polydisk

{z|lzx — all < 12° — al — & 6> 0, and k = 1,2,...,n}. (1.1.2)

Since (1.1.1) converges when summed in a certain order as a simple series, it
is necessary that |c,(z°—a)"| < B<co for all values of the indices,
m=(m, ..., m,).Setting |2° —a| =r=r;-ry* - -r, one has |c,| < B/r",
from which it follows that

0 o0 a m B
Y lemz —a)"| < B Y. = (1.1.3)

m=0 m=0 r 11[(1 |Zk—akl),
k=1 Fi

and hence it is seen that (1.1.1) converges uniformly and absolutely in the
set (1.1.2). (The interior of the set (1.1.2) is called an n-circular polycylindrical
region.) Since the series (1.1.1) converges absolutely in the polycylinder
(1.1.2) it may be summed as a simple series in any order and converges to
the same value.

Definition We shall say that a complex-valued function f(z) is holo-
morphic in the sense of Cauchy-Riemann in the domain © <= C" if the first
partial derivatives

(?f(z)= lim f(zl,...,zk+Azk,...,z,,)—f(z,,...,z,,)
E)zk Azi—0 AZk (114)
(k=1,2,...,n),

exist at each point z € D, and are continuous.

If one separates f(z) into its real and imaginary parts, u = Re f(2),
v = Im f(z), and if f(z) is holomorphic in the sense of Cauchy—Riemann one
has that

Ny 0 0
W_E g B E (1.1.5)
0yi 0x



1. FUNDAMENTALS OF THE LOCAL THEORY 3

with z, = x, + iy, (k = 1,2, ..., n). In other words, ““ Cauchy-Riemann holo-
morphic™ is equivalent to saying that f(z) is holomorphic in each variable
separately while the other variables are held fixed. If we formally introduce
the variables z; = x; + iy; and z; = x; — iy; then (1.1.5) is seen to be equiva-
lent to the system of equations, 3f/0z; =0 (j = 1, 2, ..., n). Theexact meaning
of this statement will be made clear shortly; however, accepting this state-
ment formally implies the result that each Weierstrass holomorphic function
is indeed also holomorphic in the Cauchy—Riemann sense. This follows directly
from the fact that in its polycylinder of convergence the power series (1.1.1)
may be summed as a simple series, and hence if all the z, except z; (k #J)
are held fixed, it represents a holomorphic function in the z; variable. We
shall see in what follows that the proof of the converse is not so obvious.

Definition An ordinary polycylindrical region (or polycylinder) in C" is
the Cartesian product of n bounded, simply connected, regions D, in the z;-
planes.

Theorem 1.1.1 Let f(2) be Cauchy—Riemann holomorphic and continuous
in the closure of the polycylinder, ® = [[p-1Dy . Furthermore, let the bound-
aries, 0D, , of D, be piecewise smooth curves. Then if z is an interior point of ®
we have

f(z) _ (%)u‘fe #(C)_ dC]"'dC", (116)
kl;11(_gk — zi)

where S, = [[i=y 0Dy is called the “skeleton” or ““distinguished boundary”
of ®.

Proof We prove this theorem by making repeated application of Cauchy’s
formula for one variable. In the case n = 2 we have for z, € D, and fixed

Sz 20y = [ 1022 g

2miJop, £y — 24

and hence we obtain the iterated integral

B 1\2 . f(Cu Cz)
f(z1,22) = (ﬁ) Jm:l dCle = (& — z)(C2 = 22)

for (z;, z,) € D. If the distance of z, from the boundary 0D, is greater than
some &, > 0, the integrand is absolutely integrable and we may rewrite this
as the double integral
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o ()

J‘ S d¢, d,
& (1 —z ), — 22).

The proof for n variables follows by induction.

Theorem 1.1.2 Let {f,(2)}., be a sequence of functions, Cauchy-
Riemann holomorphic in ® < C". Furthermore, let the partial sums F,(z) =
J1(2) + -+ + f,(2) converge uniformly in ® to Fo(z). Then Fy(z) is Cauchy-
Riemann holomorphic in D.

Proof Let a be an arbitrary point in D and let ‘the closed polycylinder
Aa;r)={z|lzx—al <r:k=1,...,n =D. Since for each n F(z) is a
holomorphic function in the Cauchy-Riemann sense we have for z e A(a;r)
that

’

L)” [ Fo) dl, - dg,

F(z) = \5= =
(27” Sn kﬂl(zk _ zk)

where &, = [[i-1{¢ “Ck — a| = r} is the skeleton of A(a;r). In that the
partial sums F,,(z) converge uniformly, as m — o, to Fy(z) for A(a; r) = D we
may pass to the limit under the integral sign, yielding

Fo(z) = lim

m-— o0

AN\ FDdl - de,
) L (G
=(L)" Fo0) dg, -~ dt,
2Tti YG, 2
kljl(gk—zk)

We conclude from this that Fy(z) is holomorphic in A(a; p), with p, <r,
(k=1,...,n). Since any compact subset of D can be covered by a finite
number of polycylinders of the type A(a; r) we conclude that Fy(z) is holo-
morphic in D.

From what has been said earlier it is clear that a function holomorphic in
the Weierstrass sense at the point z € D is also holomorphic in the Cauchy—
Riemann sense. It is easy to show that a function holomorphic in the Cauchy-
Riemann sense and continuous (in all the variables) in a region D < C" is
also Weierstrass holomorphic. To show that this is also the case when we
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remove the condition of continuity is considerably more difficult, and we
postpone this problem for somewhat later.

Theorem 1.1.3 Let f(z) be Cauchy—Riemann holomorphic and continuous
(in all the variables) in the region © < C". Then f(z) is also holomorphic in the
sense of Weierstrass. Furthermore, if f(z) is Weierstrass holomorphic in D then
it is continuous (in all the variables) and Cauchy—Riemann holomorphic in D.

Proof We prove this result for n = 2, the case of n variables follows by

induction. If a € D there then exists a closed polycylinder A(a; r) = D such
that by Theorem 1.1.1 we have for z € A(a; r)

1)? S(©) df
z) = |— 3
72 (271'") S (€ =z, — z3)
where d{ = d{, d{, and &, is the skeleton of A(a; p). Since

1
i — 2z —22) B L

(z1 — al)l(zz - az)k
0l — ‘11)[“(‘:2 - az)k+1

ik

converges uniformly and absolutely for |z, — a;| < p, <r, k=1, 2, and f({)
is continuous in D, then we may multiply this series by f({) and integrate
termwise. We obtain

o0

flz) = ; Zoclk(zl - al)’(zz - az)k,

where

en = ( ! )2 SO dt (1.1.7)

2ni (e —a) (¢ —a)
Furthermore, this series clearly converges uniformly in A(a; p).

That f(z) is Cauchy-Riemann holomorphic in D if it is Weierstrass holo-
morphic follows, as remarked before, from the fact that we may differentiate
a uniformly convergent series termwise in each variable separately. The fact
that it must be continuous in all the variables we show as follows.

Proof Let f(z) be expressed as its (m,, m,) partial sum plus a remainder
term, i.e.,
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my, my

fl2)= Z cu(zy — al)"(zz - az)l + le,mz(z)’
k,1=0

and let us consider the difference f(z + h) — f(z). We have then the estimate

my, m2

Ifz+h)— f(2) =< cul(zy + hy —al)k(zz+h2—az)l

k,1=0
— iz — al)k(ZZ = az)l] 4 |Rm1,mz(z + h) — le,mz(z)l‘
For a given ¢ > 0 we may choose indices (Ny, N,) such that

|Ry mi(z + B <g[3, [R,. m(2)| < &/3 when m> N, k= 1,2)

and & is sufficiently small. Clearly the (m,, m,) partial sum is continuous (as
may be seen below) and hence for [|hl| = (|h|* + |h,]*)'? < d(e) we have

miy, m2

Y eul(zy +hy — a)i(z, + hy —ay)) —(z, — a)(z; — a,)"]

k, =0
my k,1 e e 1\ [
lcm|{ S ol 2 — @y Rz — a ( )()}<

15
k,1=0 n,v=0 u v
ntv#0

m

<

[OSHIN

We conclude that [f(z + h) — f(2)| <&, and hence Weierstrass holomorphic,
is equivalent to Cauchy-Riemann holomorphic plus continuity (in all the
variables), which is the desired result.

We remark that in what follows we shall develop the local theory of
several complex variables for the case n = 2; most of our results carry over
immediately to the case n > 2 by induction.

Let us suppose the function f(z) is Weierstrass holomorphic in the domain
D; then, about each point a € D, f(z) has a power series expansion of the
form (1.1.1), which converges in a bicylindrical neighborhood. Considered as
a power series in, say, just the variable z,, for z, = a,, the function is clearly
analytic and hence its partial derivatives with respect to z; may be computed
by differentiating the series termwise. Similarly, we may compute the partial
derivatives with respect to z, . Indeed, the derived series are also holomorphic
in the two complex variables z; and z,, which may be seen by using the
method of dominants. We consider the following general series obtained by
formally differentiating termwise with respect to z; and z,:

™
™

1 ) B @ (1

m'!n! 0z," 0z," 1SmK=a\M

k
)(n)clk(zl - al)l_m(zz - az)k_" (1.1.8)
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Clearly one has from Eq. (1.1.7), the two-variable Cauchy estimates for the
coefficient of (1.1.8), i.e.,

lewl < Mpy'py %, (1.1.9)

where p, <r,, and the series for f(z) converges in the bicylinder A(a;r),
r=(ry, ry); here M = M(p) is the maximum modulus of f(z) on the skeleton
of the bicylinder A(a; p). Using (1.1.9) we obtain the following estimate,

1

m'n!

"t f(2)

0z,™ 0z,"

< ) G 52 ()
P1 P2 U=mk=n\M/ \n P P2

_ M (l_lzl—a1|)_"'"'(1_|z2—a2|)"”"
p"ps" P1 P2 '

from which it follows that the derived series for " *"f/0z,™0z," is holomorphic
at z = a. Since this holds for all points a € D we obtain that the derived series
is holomorphic in D. By induction one then has:

Theorem 1.1.4 If f(2) is Weierstrass holomorphic in the domain D, then
its partial derivatives of all orders are Weierstrass holomorphic in D.

We have already observed that if f(z) is Weierstrass holomorphic in D
then it is also Cauchy—Riemann holomorphic, and the coefficients of the
series (1.1.1) are given by (1.1.7). Comparing this with the expression (1.1.8)
yields the well-known relationships between the Taylor coefficients and the
partial derivatives:

1 am +nf(a) _

m!n! 0z,™ 0z,"

Coms (1.1.10)

and
oo‘ 1 am+ nf(a)

n=o m!n! dz,™ 0z,"

f(z) = 20 (z1 — a)"(z, — ay)". (1.1.11)

Let us suppose that the series (1.1.11) converges in the bicylinder A,(a) =
{z | |z, — a| < r; k=1,2}, and consider the formal power series

rd — 2 & I am+nf(20) 0\ym O\n
/(Z)=m;0 nzomm(zl =z V(22 — 227), (1.1.12)
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where (z,°, z,°) € A(a). We shall show that the series for f(z) converges in
the bicylinder A,(z°), where p, =r, — |2,° — @/, and furthermore in this
region f(z) = f(z). It follows then that f(z) as defined by (1.1.11) is Weier-
strass holomorphic in the interior of A,(a).

From (1.1.8) we have

ez 2 & (4 m)! (k + n)!
R .
021 622 1=0 k=0 l 1\

0 I k
cl+m,k+n(zl - al) (220 S az) 9

and hence we have

o l+m)'(k+n)' !
= ; Z k‘ |cl+m,k+n||210—'allllzlo_az|k'

om + nf(ZO)

0z," 0z,"

Consequently, one has for an estimate on f(2), when |z, — z,°| < P < Pi»
Pr =T — AR A (k=1,2),

& > am+"f(zo) Ooym On
|f(Z)|SmZ Z mint | 3z, 0z lzy — 2z, |22 — 22
® p"p" (2 I+ m)(k+ n)!
< LT A PR
—m,z,,v"‘:o m!n! (1 kz=0 k!

X lerm cenl 1200 = @l 1220 = o)

- i o |(Z": \i P!q!ﬁ'f—llho—alllﬁﬁ_kﬁzoﬂazlk)
N o " \iZ0 =0 (p—DUNg — k)'k!

Since # = f; + 120 — @] <r, (k=1,2), the series (1.1.1) with

L o""f(a)
p! q' 0z 622

Cﬂy ‘l

is uniformly and absolutely convergent in the bicylinder, Aa) = A(a). We
realize from this that the series (1.1.12) converges absolutely in Aﬁ(z(’) and
hence we may sum this series by regrouping the terms in various ways. For
instance one such grouping gives us

0 1 am +nf(20)

Jo= %

oym 0
o min! 0z," 0z," (zy —z,)"(za — 257"
m,n= In!
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o0

1
P (z1 — 2,0)"(z — 2,°)"

m,n=0
® I+ m)l(k + n)!
’ (1 kz;o ——l'k'—— Ct+m,k+n(210 = ‘11)’(220 - az)k)

ro4 plglz, —2,°" (z,° —a)'(z, — 2,°) 7 4(z,° — ap)*
8 (IZb k§=:0 (p— DY g — k)!k! )
= i Ocp,q[(zl - Zlo) + (Zlo —a))l(z, — 220) + (Zzo —ay)]?
p.a=
= f(2).

We summarize the above discussion by the following theorem.

Theorem 1.1.5 Let f(z) be Weierstrass holomorphic at the point a € D
and be represented there by the power series (1.1.1), which converges in the
bicylinder AJ(a) = ®. Then f(z) is Weierstrass holomorphic at each point
z° € A(a), and has a power series representation, which converges in the bi-
cylinder A,(z°), where p, = r, — 12,2 — a| (k =1,2).

The previous theorem tells us that the regrouped series (1.1.12) must con-
verge at least in the original bicylinder. If on the other hand this series con-
verges in a larger bicylinder, Ap,(z°), i.e., where p,' > r, — |2,° — a|, this re-
grouped series serves to provide a direct holomorphic continuation of the
function element (f(z), z°). Choosing a point z’ € A,(z°) we may again
regroup terms of this series about the center z’, and if its bicylinder of con-
vergence extends past the boundary of A,,,(ZO) we have again obtained a
continuation of our original function element. Indeed, we shall refer (as in
the case of one complex variable) to any function element obtained by a
finite chain of direct holomorphic continuations (using bicylinders) as a
holomorphic continuation of the original function element.

Let us now define as the real environment [B.M. 1, p. 34] of a point 20 e D,
any point set containing the rectangle

r={z ‘ Ix, — x| < ds yi = wk=1,2}.
We note that since the partial derivatives 0™ *"f/dz,™ 0z may be evaluated

at z = z° by just using points of r, that if f(z) =0 for z inr, then f(z) =0
in a full neighborhood of z°. Now if f(z) is given to be holomorphic in the
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domain D, then it follows that f(z) = 0 in D, since the value of the function
f(z) at each point of D may be found with a finite chain of direct holomorphic
continuations by bicylinders. From this fact it follows immediately that if
two functions, f;(z) and f,(z), which are defined in the domains D; and D,,
respectively, coincide on a real environment of a point z° € D, N D,, then
there exists a unique function defined in ®; U D,, which coincides with
each of the £, (z) (k = 1, 2) in their respective domains of definition.}

We are now able, using the information above, to give a precise meaning
to the complex form of the Cauchy—Riemann equations. For instance, let us
suppose the function f(z) is Weierstrass holomorphic in the domain ®. Then
for each point z° € D there exists a bicylinder A,(z°) such that the power
series

o0

f(2)= 1 Y culxy + iy, — 2,9 (x3 + iys — 2,°)

converges for each (x; + iy, X, +iy,) € A,(z°). Indeed this series is seen to
converge for complex values of x,, and y, also, provided that [x,| <r/2,
lyi| < r/2 (k =1, 2). Hence regrouping the series in terms of powers of xy,
¥i, X5, V2, We see that it represents a Weierstrass holomorphic function of
these four complex variables in the polycylinder A{3(x°, »°). If we now
introduce the linear transformation z, = x, + iy, z¥ = x, — iy, (k =1, 2),
the composite function is certainly Weierstrass holomorphic in at least the
polycylinder,

AN, 2*°) = {(z, 2*) |1z — 201 < mif4, 12* — ¥ < mf4s k=1, 2}

If the closure of D is compact in C?, then ® has a finite covering with
bicylinders A,(z™), each suitably chosen for direct holomorphic continuation
of f(z) between overlapping bicylinders. We conclude that in the space of
four complex variables, (x;, X, , y1, ¥,) € C*, the function W¥(x, y) =f(2) is
holomorphic in a four-complex dimensional neighborhood of D, A */(D).
Likewise the composite function, ®(z, z*) = ¥(x, y) (obtained by the linear
mapping above), and the derived functions 0®/oz* (k =1, 2), are also
holomorphic in &/ ®(D).

Now if as we have assumed, f(z) is holomorphic in D, then for each point
2% e D, the Weierstrass holomorphic function 0®(z, z¥)/0z* (k =1, 2),
defined in the polydisk A{f2(z°, z*°) by the regrouped series, converges there
identically to zero. We conclude from this that 0®/dz* =0 for (z, z¥) €
N @YD), and hence in the restriction, Z, = z* (k = 1, 2), (i.e., x, and y, are

t For further results of this kind the reader is referred to [B.M.1, Chapter 11].
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real), 0®/0z, =0 (k =1, 2). Hence, if we assume f(z) is Weierstrass holo-
morphic, the complex forms of the Cauchy-Riemann equations have a
clearly understood meaning.

2. Hartogs’ Theorem and Holomorphic Continuation

At this point we are ready to demonstrate that Cauchy-Riemann and
Weierstrass holomorphic are equivalent concepts. Afterwards we shall just
refer to functions being simply holomorphic. To this end we first prove a
theorem known as Hartogs’ lemma.

Theorem 1.2.1 (Hartogs’ Lemma) Let f(z) be Cauchy-Riemann holo-
morphic in the closed bicylinder A={z llzkl < re; k=1,2}, and bounded in
the closed bicylinder, A = {z ||zl| <r, |zl < p <ry}. Then f(z) is a con-
tinuous function of z; and z, simultaneously for z € A.

Proof Since f(z) is Cauchy-Riemann holomorphic it is holomorphic in
each variable separately, and (since for one complex variable Cauchy-
Riemann and Weierstrass holomorphic are obviously equivalent) we have
that the series
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converges uniformly for z, such that |z,| <r,. Here the variable z; is
arbitrary with |z;| < ry; we remark that it is not self-evident at this time that
the functions f;(z,) are analytic in |z;| < 7. In order to see this we proceed
as follows: first, f(z;, 0) = fo(z;) must be holomorphic in |z;| < ry; second,
so are the functions F™(z,, z,) (for each fixed z,, 0 <[z [ < r,) defined
recursively by

f(zy, 22) — :gofk(zl)zzk

n

F(")(lezz)= -
2

= 3 frnz)zs (1.2.2)
1=0

Evidently, the function F®™(z,, z,) is Cauchy-Riemann holomorphic in the
bicylinder {0 < |z,| < rp} % {lz;| <ry}. Let {z{"}, i € I (a suitable index set),
be a sequence of points in {0 < |z,| < r,} which converge to z; = 0. Then



