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Abstract

Distributed constraint optimization (DCOP) is a model where several agents coor-
dinate with each other to take on values so as to minimize the sum of the resulting
constraint costs, which are dependent on the values of the agents. This model is
becoming popular for formulating and solving agent-coordination problems. As a
result, researchers have developed a class of DCOP algorithms that use search tech-
niques. For example, Asynchronous Distributed Constraint Optimization (ADOPT)
is one of the pioneering DCOP search algorithms that has been widely extended.
Since solving DCOP problems optimally is NP-hard, solving large problems effi-

ciently becomes an issue.

DCOP search algorithms can be viewed as distributed versions of centralized
search algorithms. Therefore, I hypothesize that one can speed up DCOP search al-
gorithms by applying insights gained from centralized search algorithms, specifically
(1) by using an appropriate search strategy, (2) by sacrificing solution optimality, (3)
by using more memory, and (4) by reusing information gained from solving similar
DCOP problems. However, DCOP search algorithms are sufficiently different from

centralized search algorithms that these insights cannot be trivially applied.

To validate my hypotheses: (1) I introduce Branch-and-Bound ADOPT (BnB-
ADOPT), an extension of ADOPT that changes the search strategy of ADOPT from
memory-bounded best-first search to depth-first branch-and-bound search, resulting
in one order of magnitude speedup. These results validate my hypothesis that DCOP
search algorithms that employ depth-first branch-and-bound search can be faster than
DCOP search algorithms that employ memory-bounded best-first search. (2) I intro-
duce an approximation mechanism that uses weighted heuristic values to trade off
solution costs for smaller runtimes. This approximation mechanism allows ADOPT
and BnB-ADOPT to terminate faster with larger weights, validating my hypothesis

that DCOP search algorithms that use weighted heuristic values can have runtimes
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that decrease as larger weights are used. Additionally, the new approximation mech-
anism provides relative error bounds and thus complements existing approximation
mechanisms that only provide absolute error bounds. (3) I introduce the MaxPriority,
MaxEffort and MaxUtility DCOP-specific caching schemes, which allow ADOPT
and BnB-ADOPT to cache DCOP-specific information when they have more mem-
ory available and terminate faster with larger amounts of memory. Experimental re-
sults show that the MaxEffort and MaxUtility schemes speed up ADOPT more than
the currently used generic caching schemes, and the MaxPriority scheme speeds up
BnB-ADOPT at least as much as the currently used generic caching schemes. There-
fore, these results validate my hypothesis that DCOP-specific caching schemes can
reduce the runtime of DCOP search algorithms at least as much as the currently used
generic caching schemes. (4) I introduce an incremental procedure and an incremen-
tal pseudo-tree reconstruction algorithm that allow ADOPT and BnB-ADOPT to
reuse information gained from solving similar DCOP problems to solve the current
problem faster, resulting in runtimes that decrease with larger amounts of informa-
tion reuse. These results validate my hypothesis that DCOP search algorithms that
reuse information from searches of similar DCOP problems to guide their search can
have runtimes that decrease as they reuse more information.



Chapter 1

Introduction

Distributed constraint optimization (DCOP) (Modi, 2003; Mailler, 2004; Petcu,
2007; Pearce, 2007; Burke, 2008) is a model where several agents coordinate with
each other to take on values so as to minimize the sum of the resulting constraint
costs, which are dependent on the values of the agents. This model is becoming
popular for formulating and solving agent-coordination problems (Lesser, Ortiz, &
Tambe, 2003; Maheswaran, Pearce, & Tambe, 2004; Schurr, Okamoto, Maheswaran,
Scerri, & Tambe, 2005; Junges & Bazzan, 2008; Ottens & Faltings, 2008; Kumar,
Faltings, & Petcu, 2009). As a result, researchers have developed several DCOP
algorithms that use search techniques. For example, Asynchronous Distributed Con-
straint Optimization (ADOPT) (Modi, Shen, Tambe, & Yokoo, 2005) is one of the
pioneering DCOP search algorithms that has been widely extended. Since solving
DCOP problems optimally is NP-hard (Modi et al., 2005), solving large problems
efficiently becomes an issue.

DCOP search algorithms can be viewed as distributed versions of centralized
search algorithms. Therefore, I hypothesize that one can speed up DCOP search al-
gorithms by applying insights gained from centralized search algorithms, specifically
(1) by using an appropriate search strategy, (2) by sacrificing solution optimality, (3)
by using more memory, and (4) by reusing information from searches of similar
DCQOP problems.

To validate my hypotheses: (1) I introduce Branch-and-Bound ADOPT (BnB-
ADOPT), an extension of ADOPT that changes the search strategy of ADOPT from
memory-bounded best-first search to depth-first branch-and-bound search, resulting
in one order of magnitude speedup when solving sufficiently large DCOP problems;
(2) I introduce an approximation mechanism that allows ADOPT and BnB-ADOPT
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Figure 1.1: Example DCOP Problem

to use weighted heuristic values to trade off solution costs for smaller runtimes; (3)
I introduce DCOP-specific caching schemes that allow ADOPT and BnB-ADOPT
to store more information when they have more memory available, which can be
at least as fast as the currently used generic caching schemes; and (4) I introduce
an incremental procedure and an incremental pseudo-tree reconstruction algorithm
that allow ADOPT and BnB-ADOPT to reuse information from searches of similar
DCOP problems. ADOPT and BnB-ADOPT terminate faster when they reuse more
information.

1.1 DCOP Problems

A DCOP problem consists of a set of agents, each responsible for taking on (= as-
signing itself) a value from its finite domain. The agents coordinate their value as-
signments, which are subjected to a set of constraints. Two agents are said to be
constrained if they share a constraint. Each constraint has an associated cost, which
depends on the values taken on by the constrained agents. An agent only knows the
costs of constraints that it is involved in. A complete solution is an assignment of
values to all agents, and a partial solution is an assignment of values to a subset of
agents. The cost of a solution is the sum of the constraint costs of all constraints
resulting from the given value assignments. Solving a DCOP problem optimally
means to find a complete solution such that the sum of all constraint costs is min-
imized. Finding such a cost-minimal solution is NP-hard (Modi et al., 2005). It is
common to visualize a DCOP problem as a constraint graph where the vertices are
the agents and the edges are the constraints. Figure 1.1(a) shows the constraint graph

of an example DCOP problem with four agents that can each take on the value zero
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or one, and Figure 1.1(b) shows the constraint costs. The cost-minimal solution of
our example DCOP problem is where all agents take on the value one, incurring a
total cost of 12 (3 from each constraint).

The DCOP model is becoming popular for formulating and solving agent-
coordination problems such as the distributed scheduling of meetings (Maheswaran
et al., 2004; Petcu & Faltings, 2005b; Greenstadt, Grosz, & Smith, 2007; Zivan,
2008; Yeoh, Felner, & Koenig, 2009, 2010), the distributed coordination of un-
manned aerial vehicles (Schurr et al., 2005), the distributed coordination of sensors
in a network (Lesser et al., 2003; Zhang, Xing, Wang, & Wittenburg, 2003; Yeoh,
Sun, & Koenig, 2009a; Yeoh, Varakantham, & Koenig, 2009b; Zivan, Glinton, &
Sycara, 2009; Lisy, Zivan, Sycara, & Péchoucek, 2010), the distributed allocation of
resources in disaster evacuation scenarios (Carpenter, Dugan, Kopena, Lass, Naik,
Nguyen, Sultanik, Modi, & Regli, 2007; Lass, Kopena, Sultanik, Nguyen, Dugan,
Modi, & Regli, 2008), the distributed synchronization of traffic lights (Junges &
Bazzan, 2008), the distributed planning of truck routes (Ottens & Faltings, 2008),
the distributed management of power distribution networks (Kumar et al., 2009) and
the distributed generation of coalition structures (Ueda, Iwasaki, & Yokoo, 2010). As
a result, researchers have developed several DCOP algorithms that use search tech-
niques (= DCOP search algorithms). For example, ADOPT (Modi et al., 2005) is
one of the pioneering DCOP search algorithms that has been widely extended (Modi
& Ali, 2004; Ali, Koenig, & Tambe, 2005; Bowring, Tambe, & Yokoo, 2006; Davin
& Modi, 2006; Pecora, Modi, & Scerri, 2006; Choxi & Modi, 2007; Matsui, Silaghi,
Hirayama, Yokoo, & Matsuo, 2008; Silaghi & Yokoo, 2009; Matsui, Silaghi, Hi-
rayama, Yokoo, & Matsuo, 2009; Gutierrez & Meseguer, 2010). ADOPT is a dis-
tributed best-first search algorithm that is complete and memory-bounded.

1.2 Hypotheses

DCOP search algorithms can be viewed as distributed versions of centralized search

algorithms. Therefore, my hypothesis is as follows:

One can speed up DCOP search algorithms by applying insights gained

from centralized search algorithms to DCOP search algorithms.
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Specifically, there are four common approaches that are used to speed up cen-
tralized search algorithms in the literature that can be applied to DCOP search algo-

rithms:

1. One can speed up DCOP search algorithms by using an appropriate search
strategy for the given problem type. A common approach is to use depth-
first branch-and-bound search instead of memory-bounded best-first search
for problems whose search trees are bounded. Researchers have shown that
depth-first branch-and-bound search is faster than memory-bounded best-first
search for these problems (Zhang & Kort, 1995). Therefore, I hypothesize that
DCOP search algorithms that employ depth-first branch-and-bound search can
be faster than DCOP search algorithms that employ memory-bounded best-
first search since the search trees of DCOP problems are bounded.

2. One can speed up DCOP search algorithms by sacrificing solution optimality.
A common approach is to use weighted heuristic values to focus the search.
Algorithms that use this approach include Weighted A* (Pohl, 1970) and
Weighted A* with dynamic weights (Pohl, 1973). These algorithms guarantee
that the costs of the solutions found are at most a constant factor larger than
the minimal costs, where the constant is the largest weight used. Typically, the
runtime of these algorithms decreases as larger weights are used. Therefore,
I hypothesize that DCOP search algorithms that use weighted heuristic values

can have runtimes that decrease as larger weights are used.

3. One can speed up DCOP search algorithms by using more memory. A com-
mon approach is to cache information as long as memory is available, such that
the cached information can be used when needed. Algorithms that use this ap-
proach include MA* (Chakrabarti, Ghosh, Acharya, & DeSarkar, 1989) and
SMA®* (Russell, 1992). Typically, the runtime of these algorithms decreases
as more memory is available. Motivated by these results, researchers have
developed any-space versions of DCOP search algorithms, such as any-space
ADOPT (Matsui, Matsuo, & Iwata, 2005) and any-space NCBB (Chechetka
& Sycara, 2006a), and showed that the runtime of these algorithms indeed

decreases as more memory is available. However, they use generic caching
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schemes, such as FIFO and LRU, that are similar to popular page replacement
schemes used in operating systems. These generic schemes do not exploit the
cached information in a DCOP-specific way. Therefore, I hypothesize that
DCOP-specific caching schemes can reduce the runtime of DCOP search al-
gorithms at least as much as the currently used generic caching schemes.

4. One can speed up DCOP search algorithms by reusing information from
searches of similar DCOP problems. A common approach is to reuse infor-
mation from searches of similar problems to guide the search. Algorithms that
use this approach include incremental search algorithms (Koenig, Likhacheyv,
Liu, & Furcy, 2004b) such as D* (Stentz, 1995), Adaptive A* (Koenig &
Likhachev, 2005) and FRA* (Sun, Yeoh, & Koenig, 2009b). Typically, the
runtime of these algorithms decreases as they reuse more information. There-
fore, I hypothesize that DCOP search algorithms that reuse information from
searches of similar DCOP problems to guide their search can have runtimes

that decrease as they reuse more information.

1.3 Contributions

Although DCOP search algorithms can be viewed as distributed versions of cen-
tralized search algorithms, they are often independently developed. For example,
ADOPT was developed independent of RBFS (Korf, 1993), but both algorithms
share many properties. For example, both algorithms are memory-bounded, use
the same search strategy and use the same principle to restore information already
purged from memory. Therefore, one should be able to utilize the insights gained
from centralized search algorithms to speed up DCOP search algorithms. However,
DCOP search algorithms are sufficiently different from centralized search algorithms
that these insights cannot be trivially applied. For example, unlike centralized search
algorithms, DCOP search algorithms operate in a distributed fashion, have mem-
ory that is distributed among the agents and have agents that can only perform local
searches, yet must follow a global search strategy.

This dissertation uses the four approaches described in Section 1.2 to speed up
DCOP search algorithms. I make a design choice to use the framework of ADOPT,
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which is one of the pioneering DCOP search algorithms, as the starting platform for
the work in this dissertation. The motivation for this decision is that ADOPT has
been widely extended (Modi & Ali, 2004; Ali et al., 2005; Bowring et al., 2006;
Davin & Modi, 2006; Pecora et al., 2006; Choxi & Modi, 2007; Matsui et al., 2008;
Silaghi & Yokoo, 2009; Matsui et al., 2009; Gutierrez & Meseguer, 2010) in addition
to it having good properties. For example, agents in ADOPT operate concurrently
and asynchronously to solve subproblems in parallel, which results in smaller run-
times than if they are to operate sequentially and synchronously. This dissertation

makes the following four contributions:

1. To assess the hypothesis that DCOP search algorithms that employ depth-
first branch-and-bound search can be faster than DCOP search algorithms that
employ memory-bounded best-first search, we introduce BnB-ADOPT. BnB-
ADOPT is a DCOP search algorithm that uses the framework of ADOPT
but changes the search strategy of ADOPT from memory-bounded best-
first search to depth-first branch-and-bound search. Although there exist
other DCOP search algorithms, such as SBB (Hirayama & Yokoo, 1997),
NCBB (Chechetka & Sycara, 2006b) and AFB (Gershman, Meisels, & Zivan,
2009), that employ depth-first branch-and-bound search, it is difficult to de-
termine if depth-first branch-and-bound search is faster than memory-bounded
best-first search since these algorithms differ by more than their search strate-
gies when compared to ADOPT. In fact, SBB has been shown to be slower
than ADOPT (Modi et al., 2005) while NCBB and AFB have been shown to
be faster than ADOPT (Chechetka & Sycara, 2006b; Gershman et al., 2009).
Hence, we introduce BnB-ADOPT since these results make clear the need for
two DCOP search algorithms that differ only in their search strategies. Ex-
perimental results show that BnB-ADOPT is up to one order of magnitude
faster than ADOPT when solving sufficiently large DCOP problems. There-
fore, these results validate the hypothesis that DCOP search algorithms that
employ depth-first branch-and-bound search can be faster than DCOP search
algorithms that employ memory-bounded best-first search.

This work is non-trivial since ADOPT is a rather complicated distributed al-

gorithm whose agents operate concurrently and asynchronously at all times.
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