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Preface

My purpose in this monograph is to present an essentially self-contained
account of the mathematical theory of Galerkin finite element methods as
applied to parabolic partial differential equations. The emphases and selection
of topics reflects my own involvement in the field over the past 25 years,
and my ambition has been to stress ideas and methods of analysis rather
than to describe the most general and farreaching results possible. Since the
formulation and analysis of Galerkin finite element methods for parabolic
problems are generally based on ideas and results from the corresponding
theory for stationary elliptic problems, such material is often included in the
presentation.

The basis of this work is my earlier text entitled Galerkin Finite Element
Methods for Parabolic Problems, Springer Lecture Notes in Mathematics,
No. 1054, from 1984. This has been out of print for several years, and I
have felt a need and been encouraged by colleagues and friends to publish an
updated version. In doing so I have included most of the contents of the 14
chapters of the earlier work in an updated and revised form, and added four
new chapters, on semigroup methods, on multistep schemes, on incomplete
iterative solution of the linear algebraic systems at the time levels, and on
semilinear equations. The old chapters on fully discrete methods have been
reworked by first treating the time discretization of an abstract differential
equation in a Hilbert space setting, and the chapter on the discontinuous
Galerkin method has been completely rewritten.

The following is an outline of the contents of the book:

In the introductory Chapter 1 we begin with a review of standard material
on the finite element method for Dirichlet’s problem for Poisson’s equation
in a bounded domain, and consider then the simplest Galerkin finite element
methods for the corresponding initial-boundary value problem for the linear
heat equation. The discrete methods are based on associated weak, or vari-
ational, formulations of the problems and employ first piecewise linear and
then more general approximating functions which vanish on the boundary
of the domain. For these model problems we demonstrate the basic error
estimates in energy and mean square norms, in the parabolic case first for
the semidiscrete problem resulting from discretization in the spatial vari-
ables only, and then also for the most commonly used fully discrete schemes
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obtained by discretization in both space and time, such as the backward Euler
and Crank-Nicolson methods.

In the following five chapters we study several extensions and generaliza-
tions of the results obtained in the introduction in the case of the spatially
semidiscrete approximation, and show error estimates in a variety of norms.
First, in Chapter 2, we formulate the semidiscrete problem in terms of a more
general approximate solution operator for the elliptic problem in a manner
which does not require the approximating functions to satisfy the homoge-
neous boundary conditions. As an example of such a method we discuss a
method of Nitsche based on a nonstandard weak formulation. In Chapter 3
more precise results are shown in the case of the homogeneous heat equation.
These results are expressed in terms of certain function spaces H*(§2) which
are characterized by both smoothness and boundary behavior of its elements,
and which will be used repeatedly in the rest of the book. We also demon-
strate that the smoothing property for positive time of the solution operator
of the initial value problem has an analogue in the semidiscrete situation, and
use this to show that the finite element solution converges to full order even
when the initial data are nonsmooth. The results of Chapters 2 and 3 are
extended to more general linear parabolic equations in Chapter 4. Chapter
5 is devoted to the derivation of stability and error bounds with respect to
the maximum-norm for our plane model problem, and in Chapter 6 negative
norm error estimates of higher order are derived, together with related results
concerning superconvergence.

In the next six chapters we consider fully discrete methods obtained by
discretization in time of the spatially semidiscrete problem. First, in Chapter
7, we study the homogeneous heat equation and give analogues of our pre-
vious results both for smooth and for nonsmooth data. The methods used
for time discretization are of one-step type and rely on rational approxima-
tions of the exponential, allowing the standard Euler and Crank-Nicolson
procedures as special cases. Our approach here is to first discretize a par-
abolic equation in an abstract Hilbert space framework with respect to time,
and then to apply the results obtained to the spatially semidiscrete problem.
The analysis uses eigenfunction expansions related to the elliptic operator
occurring in the parabolic equation, which we assume positive definite. In
Chapter 8 we generalize the above abstract considerations to a Banach space
setting and allow a more general parabolic equation, which we now analyze
using the Dunford-Taylor spectral representation. The time discretization is
interpreted as a rational approximation of the semigroup generated by the
elliptic operator, i.e., the solution operator of the initial-value problem for
the homogeneous equation. Application to maximum-norm estimates is dis-
cussed. In Chapter 9 we study fully discrete one-step methods for the inho-
mogeneous heat equation in which the forcing term is evaluated at a fixed
finite number of points per time stepping interval. In Chapter 10 we apply
Galerkin’s method also for the time discretization and seek discrete solutions
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as piecewise polynomials in the time variable which may be discontinuous
at the now not necessarily equidistant nodes. In this discontinuous Galerkin
procedure the forcing term enters in integrated form rather than at a finite
number of points. In Chapter 11 we consider multistep backward difference
methods. We first study such methods with constant time steps of order at
most 6, and show stability as well as smooth and nonsmooth data error es-
timates, and then discuss the second order backward difference method with
variable time steps. In Chapter 12 we study the incomplete iterative solution
of the finite dimensional linear systems of algebraic equations which need to
be solved at each level of the time stepping procedure, and exemplify by the
use of a V-cycle multigrid algorithm.

The next two chapters are devoted to nonlinear problems. In Chapter 13
we discuss the application of the standard Galerkin method to a model non-
linear parabolic equation. We show error estimates for the spatially semidis-
crete problem as well as the fully discrete backward Euler and Crank-Nicolson
methods, using piecewise linear finite elements, and then pay special atten-
tion to the formulation and analysis of time stepping procedures based on
these, which are linear in the unknown functions. In Chapter 14 we derive
various results in the case of semilinear equations, in particular concerning
the extension of the analysis for nonsmooth initial data from the case of linear
homogenous equations.

In the last four chapters we consider various modifications of the stan-
dard Galerkin finite element method. In Chapter 15 we analyze the so called
lumped mass method for which in certain cases a maximum-principle is valid.
In Chapter 16 we discuss the H! and H~! methods. In the first of these, the
Galerkin method is based on a weak formulation with respect to an inner
product in H! and for the second, the method uses trial and test functions
from different finite dimensional spaces. In Chapter 17, the approximation
scheme is based on a mixed formulation of the initial boundary value problem
in which the solution and its gradient are sought independently in different
spaces. In the final Chapter 18 we consider a singular problem obtained by
introducing polar coordinates in a spherically symmetric problem in a ball in
R3 and discuss Galerkin methods based on two different weak formulations
defined by two different inner products.

References to the literature where the reader may find more complete
treatments of the different topics, and some historical comments, are given
at the end of each chapter.

A desirable mathematical background for reading the text includes stan-
dard basic partial differential equations and functional analysis, including
Sobolev spaces; for the convenience of the reader we often give references to
the literature concerning such matters.

The work presented, first in the Lecture Notes and now in this monograph,
has grown from courses, lecture series, summer-schools, and written material
that I have been involved in over a long period of time. I wish to thank my
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students and colleagues in these various contexts for the inspiration and sup-
port they have provided, and for the help they have given me as discussion
partners and critics. As regards this new version of my work I particularly
address my thanks to Georgios Akrivis, Stig Larsson, and Per-Gunnar Mar-
tinsson, who have read the manuscript in various degrees of detail and are
responsible for many improvements. I also want to express my special grat-
itude to Yumi Karlsson who typed a first version of the text from the old
lecture notes, and to Gunnar Ekolin who generously furnished me with expert
help with the intricacies of TEX.

Goteborg Vidar Thomée
July 1997



Preface to the Second Edition

I am pleased to have been given the opportunity to prepare a second edition
of this book. In doing so, I have kept most of the text essentially unchanged,
but after correcting a number or typographical errors and other minor inad-
equacies, I have also taken advantage of this possibility to include some new
material representing work that I have been involved in since the time when
the original version appeared about eight years ago.

This concerns in particular progress in the application of semigroup theory
to stability and error analysis. Using the theory of analytic semigroups it is
convenient to reformulate the stability and smoothing properties as estimates
for the resolvent of the associated elliptic operator and its discrete analogue.
This is particularly useful in deriving maximum-norm estimates, and has led
to improvements for both spatially semidiscrete and fully discrete problems.
For this reason a somewhat expanded review of analytic semigroups is given
in the present Chapter 6, on maximum-norm estimates for the semidiscrete
problem, where now resolvent estimates for piecewise linear finite elements
are discussed in some detail. These changes have affected the chapter on
single step time stepping methods, expressed as rational approximation of
semigroups, now placed as Chapter 9. The new emphasis has led to certain
modifications and additions also in other chapters, particularly in Chapter
10 on multistep methods and Chapter 15 on the lumped mass method.

I have also added two chapter at the end of the book on other topics
of recent interest to me. The first of these, Chapter 19, concern problems
in which the spatial domain is polygonal, with particular attention given to
noncovex such domains. rather than with smooth boundary, as in most of the
rest of the book. In this case the corners generate singularites in the exact
solution, and we study the effect of these on the convergence of the finite
element solution.

The second new chapter, Chapter 20, considers an alternative to time
stepping as a method for discretization in time, which is based on representing
the solution as an integral involving the resolvent of the elliptic operator
along a smooth curve extending into the right half of the complex plane,
and then applying an accurate quadrature rule to this integral. This reduces
the parabolic problem to a finite set of elliptic problems that may be solved
in parallel. The method is then combined with finite element discretization
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in the spatial variable. When applicable, this method gives very accurate
approximations of the exact solution in an efficient way.

I would like to take this opportunity to express my warm gratitude to
Georgios Akrivis for his generous help and support. He has critically read
through the new material and made many valuable suggestions.

Goteborg Vidar Thomée
March 2006
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1. The Standard Galerkin Method

In this introductory chapter we shall study the standard Galerkin finite
element method for the approximate solution of the model initial-boundary
value problem for the heat equation,

(1.1) u—Au=f inf2, fort>0,
u=0 ondf2, fort>0, withu(,0)=v in 2,

where 2 is a domain in R? with smooth boundary 812, and where u = u(z, t),
us denotes du/dt, and A = Ej___l 9?/dx? the Laplacian.

Before we start to discuss this problem we shall briefly review some ba-
sic relevant material about the finite element method for the corresponding
stationary problem, the Dirichlet problem for Poisson’s equation,

(1.2) —Au=f inf2, withu=0 on9f2.

Using a variational formulation of this problem, we shall define an approxi-
mation of the solution u of (1.2) as a function u, which belongs to a finite-
dimensional linear space S, of functions of  with certain properties. This
function, in the simplest case a continuous, piecewise linear function on some
partition of (2, will be a solution of a finite system of linear algebraic equa-
tions. We show basic error estimates for this approximate solution in energy
and least square norms.

We shall then turn to the parabolic problem (1.1) which we first write in
a weak form. We then proceed to discretize this problem, first in the spatial
variable x, which results in an approximate solution wup(-,t) in the finite
element space Sy, for ¢ > 0, as a solution of an initial value problem for a
finite-dimensional system of ordinary differential equations. We then define
the fully discrete approximation by application of some finite difference time
stepping method to this finite dimensional initial value problem. This yields
an approximate solution U = Uj of (1.1) which belongs to S, at discrete
time levels. Error estimates will be derived for both the spatially and fully
discrete solutions.

For a general 2 C R? we denote below by || - || the norm in Ly = La(2)
and by || - || that in the Sobolev space H™ = H"(2) = W] (£2), so that for
real-valued functions v,
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1/2
Ioll = s = ([ o2de) "

and, for 7 a positive integer,

(1.3) Ioll- = lolla = (3 1D%012) ",

|la| <7

where, with a = (ay,...,aq), D* = (8/0x1)** - - - (0/0z4)** denotes an
arbitrary derivative with respect to z of order |a| = Zgzl aj, so that the
sum in (1.3) contains all such derivatives of order at most . We recall that
for functions in H} = H}(§2), i.e., the functions v with Vv = grad v in L,
and which vanish on 942, ||Vv| and ||v||; are equivalent norms (Friedrichs’
lemma, see, e.g., [42] or [51]), and that

(1.4) cllvlli £ VY|l < |lvlli, Yv e H), withc>0.

Throughout this book ¢ and C will denote positive constants, not necessarily
the same at different occurrences, which are independent of the parameters
and functions involved.

We shall begin by recalling some basic facts concerning the Dirichlet prob-
lem (1.2). We first write this problem in a weak, or variational, form: We
multiply the elliptic equation by a smooth function ¢ which vanishes on 912
(it suffices to require ¢ € H}), integrate over 2, and apply Green’s formula
on the left-hand side, to obtain

(1.5) (Vu, Vo) = (f,p), Yy € H},

where we have used the L, inner products,

(1.6) (v,w):/ vwde, (Vv,Vw) = /zg: g;”
J

A function u € H} which satisfies (1.5) is called a variational solution of (1.2).
It is an easy consequence of the Riesz representation theorem that a unique
such solution exists if f € H~!, the dual space of H}. In this case (f, )
denotes the value of the functional f at ¢. Further, since we have assumed
the boundary 912 to be smooth, the solution u is smoother by two derivatives
in L, than the right hand side f, which may be expressed in the form of the
elliptic regularity inequality

(1.7) |lullm+2 < CllAu|lm = C||fllm, for any m > —1.

In particular, using also Sobolev’s embeddning theorem, this shows that the
solution u belongs to C* if f belongs to C*°. We refer to, e.g., Evans [96]
for such material.



