OREILLY

Learning

=+3JScala (ZenkR)

% K% diRit ® Jason Swartz &

=+ Scala =au)
Learning Scala

_Smw&%l

Beijing « Cambridge « Farnharn « Kdln - Sebastopol « Tokyo OREILLY"

O'Reilly Media, Inc 34X 3R B8 K 2t ARt AR

MR REXFHRT

BB 1ERR S B (CIP) #i#7

23] Scala: 30/ () Hi IR & (Swartz, J)FE. —%
EpAs. —FE &L« AR K2 H ik, 2015.8

454 JF3C : Learning Scala

ISBN 978 - 7- 5641 - 5920 7

I.0% 1I.0# . .OIAVAEE-BF
B33 V. OTP312

[A B 4548 CIP B4 4% 7 (2015) 26 165496 5

LA RAUR EERLE R B E
B .10- 2015- 157 &

© 2014 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2015. Authorized reprint of the original English edition, 2015 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.

3% X B E O'Reilly Media, Inc. i #& 2014,

XA AR K AL IR 2015, S PP R 6 kiR A 4 R AT 2] s AR A 4 B AR 89 PT R
—— O'Reilly Media, Inc.## 7T .

WA FTAT o RAF 5 @ T . A G 4EAT 3 o Ao & B R U H X EH,

23] Scala(BZENRR)

HMRAT: e R R

o hb. EREDURERE 2SS HR4E 210096
R A gt

=] Hik: http//www.seupress.com

B FHR{4: press@seupress.com

Rl 8 N R EE = DRI FRA #)
7, 787 22K X 980 Z K 16 FF 7=
k. 16

. 313 FF

W 20154E 8 A% 1 [R

W 20154E 8 A% 1 IRENRI

5. ISBN 978 - 7 - 5641 — 5920 - 7
#r: 52.007C

FHEBEA RS F AR S EHTRR. RIS (EED : 025- 83791830

MEEFHNEHB

For my loving wife, who foresees great prospects; and for my loving daughter, who also
foresees the first printed copy coming her way.

Preface

Welcome to Learning Scala. In this book I will provide you with a comprehensive yet
approachable introduction to the Scala programming language.

Who This Book Is For

This book is meant for developers who have worked in object-oriented languages such
as Java, Ruby, or Python and are interested in improving their craft by learning Scala.
Java developers will recognize the core object-oriented, static typing and generic col-
lections in Scala. However, they may be challenged to switch to Scala’s more expressive
and flexible syntax, and the use of immutable data and function literals to solve prob-
lems. Ruby and Python developers will be familiar with the use of function literals (aka
closures or blocks) to work with collections, but may be challenged with its static,
generic-supporting type system.

For these and any other developers who want to learn how to develop in the Scala
programming language, this book provides an organized and examples-based guide
that follows a gradual learning curve.

Why Write “Learning Scala”?

When I picked up Scala in early 2012, I found the process of learning the language was
longer and more challenging than it ought to be. The available books on Scala did cover
the core features of the language. However, I found it difficult to switch from Java to
Scala’s unfamiliar syntax, its preference for immutable data structures, and its sheer
extensibility. It took me several weeks to become comfortable writing new code, several
montbhs to fully understand other developers’ code, and up to a year to figure out the
more advanced features of the language.

I chose to write this book so that future developers will have an easier time learning the
language. Now, even using this book the process of learning Scala won't be easy; picking

up new skills is always going to be challenging, and learning a new language with an
unfamiliar syntax and new methodologies is going to take dedication and lots of work.
However, this book at least should make the process easier. Hopefully it will ensure that
more developers than before will pick up Scala, and also become capable enough to
work with it as their main language.

Why Learn Scala (or, Why Should You Read “Learning
Scala”)?

I enjoy developing with Scala and highly recommend it to anyone writing server ap-
plications and other types of programs suitable for Java-like languages. If you are work-
ing in domains suitable for running the Java Virtual Machine such as web applications,
services, jobs, or data processing, then I'll certainly recommend that you try using Scala.

Here’s why you should take this advice and learn to develop in Scala.

Reason T—Your Code Will Be Better

You will be able to start using functional programming techniques to stabilize your
applications and reduce issues that arise from unintended side effects. By switching
from mutable data structures to immutable data structures and from regular methods
to pure functions that have no effect on their environment, your code will be safer, more
stable, and much easier to comprehend.

Your code will also be simpler and more expressive. If you currently work in a dynamic
language such as Python, Ruby, or JavaScript, you already are familiar with the benefits
of using a short, expressive syntax, avoiding unnecessary punctuation, and condensing
map, filter, and reduce operations to simple one-liners. If you are more familiar with
statically typed languages like Java, C#, or C++, you'll be able to shed explicit types,
punctuation, and boilerplate code. You will also be able to pick up an expressive syntax
rarely seen in other compiled languages.

Finally, your code will be strongly typed (even without specifying explicit types) and
support both multiple inheritance and mixin capabilities. Also, any type incompatibil-
ities will be caught before your code ever runs. Developers in statically typed languages
will be familiar with the type safety and performance available in Scala. Those using
dynamic languages will be able to drastically increase safety and performance while
staying with an expressive language.

Reason 2—You'll Be a Better Engineer

An engineer who can write short and expressive code (as one expects in Ruby or Python)
while also delivering a type-safe and high-performance application (as one expects from
Java or C++) would be considered both impressive and valuable. I am assuming that if

x | Preface

you read this book and take up Scala programming you will be writing programs that
have all of these benefits. You’ll be able to take full advantage of Scala’s functional pro-
gramming features, deliver type-safe and expressive code, and be more productive than
you have ever been.

Learning any new programming language is a worthwhile endeavor, because you'll pick
up new and different ways to approach problem solving and algorithm and data struc-
ture design, along with ways to express these new techniques in a foreign syntax. On
top of this, taking up a functional programming language like Scala will help to shape
how you view the concepts of data mutability, higher-order functions, and side effects,
not only as new ideas but how they apply to your current coding work and designs. You
may find that working with inline functions and static types are unnecessary for your
current needs, but you’ll have some experience with their benefits and drawbacks. Plus,
if it becomes possible to apply these features in a partial manner to your current lan-
guage, such as the new lambda expression support in Java 8, you'll be ready to handle
them appropriately.

Reason 3—You'll Be a Happier Engineer

This is admittedly a bold statement from someone you haven’t met and who shouldn’t
presume to know what effect Scala development will have on your brain. I'll only state
that if your code proficiency improves to the point that you are easily writing code that
works better, reads better, debugs better, and runs faster than before, and on top of all
this takes less time to write, you're going to be happier doing so.

Not that life is all about coding, of course. Nor does the work schedule of average soft-
ware engineers involve more than half of their time spent actually writing code.

But that time spent writing code will be more fun, and you’ll be able to take more pride
in your work. That should be reason enough to learn something new.

Why Learning Scala May Not Be for You

You should know that Scala has a reputation for being difficult to learn. The language
combines two apparently conflicting software engineering paradigms: object-oriented
programming and functional programming. This synergy will be surprising to new-
comers and the resulting syntax takes some practice to pick up. Scala also has a sophis-
ticated type system that enables custom typing declarations at a level rarely seen outside
of academic languages. Ascertaining the syntax and utility of this type system will be
challenging, especially if you do not have academic experience with abstract algebra or

type theory.

If you do not have enough time to spend on reading this book and going through its
exercises, or alternately prefer more challenging or theoretical routes to learning the
language, then this book may not be suitable for you.

Preface | xi

About the Syntax Notation in This Book

Here is an example of the syntax notation you'll encounter in this book:

val <identifier>[: <type>] = <data>

This specific example is the definition of a value, a type of variable in Scala that cannot
be reassigned. It uses my own informal notation for defining the Scala language’s syntax,
one that can be easier to read than the traditional notations used to define languages
but that comes at the cost of being less formal and precise.

Here is how this notation works:

« Keywords and punctuation are printed normally as they would appear in source
code.

« Variable items, such as values, types, and literals, are surrounded by angular brack-

« _»

ets (“<
 Optional segments are surrounded by square brackets (“[” and “]”).

“w »

and “>7).

For example, in the preceding example “val” is a keyword, “identifier” and “data” are
variable items that change with the context, and “type” is an optional item that (if speci-
fied) must be separated from the identifier by a colon (*:”).

I do suggest reading the formal Scala language specification in addition to this book.
Although it uses a traditional syntax notation that may be difficult to learn, it is still
invaluable for determining the exact syntax requirements of any given feature. The
official title is The Scala Language Specification (Odersky, 2011), and you can find it
either on the official Scala site or with a quick web search.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

xii | Preface

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-

mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
http://bit.ly/Learning-Scala-materials.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning Scala by Jason Swartz (O’Reilly).
Copyright 2015 Jason Swartz, 978-1-449-36793-0.

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Preface | xiii

Safari® Books Online

.« Safari Books Online is an on-demand digital library that
@ S a f a I | delivers expert content in both book and video form from
- the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu-
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/learning-scala.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xiv | Preface

Acknowledgments

I would like to thank my editor, Meghan Blanchette, for all her efforts to improve the
quality of the book and to make its delivery possible. I would also like to thank Simon
St. Laurent for his help and encouragement in proposing the book and launching the
entire process.

This book would also not have been possible without the many excellent reviewers who
spent their own time reading and reviewing its many revisions. Thank you so much,
Edward Yue Shung Wong, Shannon “J]” Behrens, Manish Pandit, Devendra Jaisinghani,
Art Peel, Ryan Delucchi, Semmy Purewal, Luc Perkins, Robert Geist, and Alexander
Trauzzi! I've learned so much from you and really appreciate everything you have done.

I would like to thank Professor Martin Odersky, the fine folks at EPFL and Typesafe,
and the members of the Scala community for creating and improving such an amazing
language.

I'd also like to thank my wife, Jeanne, and daughter, Oona, for making their sacrifices
and providing moral support so I could write this book.

Finally, Id like to thank my brother, Joshua, for suggesting that I just go ahead and write
a book. Josh, I don’t know what you were expecting when you said that, but here it is.

Preface | xv

Table of Contents

o (= (R ix

Partl. Core Scala

1. Getting Started with the Scalable Language........ 08 BN BSE WY 3096 DS TE hiwn § 3
Installing Scala 3
Using the Scala REPL 4
Summary 6
Exercises 6

2. Working with Data: Literals, Values, Variables, and Types..............cccvevvennn 9
Values 10
Variables 12
Naming 13
Types 15

Numeric Data Types 15
Strings 17
An Overview of Scala Types 21
Tuples 25
Summary 26
Exercises 26

3. Expressionsand Conditionals.coovvviineiiinieeinneirannnnnannn. 27

Expressions 27
Defining Values and Variables with Expressions 28
Expression Blocks 28
Statements 29

If..Else Expression Blocks 30
If Expressions 30

If-Else Expressions
Match Expressions
Matching with Wildcard Patterns
Matching with Pattern Guards
Matching Types with Pattern Variables
Loops
Iterator Guards
Nested Iterators
Value Binding
While and Do/While Loops
Summary
Exercises

Functions.............c...... « wars arerire R BB Tore TR ol 06 v Mo it S1c's

Procedures

Functions with Empty Parentheses
Function Invocation with Expression Blocks
Recursive Functions

Nested Functions

Calling Functions with Named Parameters
Parameters with Default Values

Vararg Parameters

Parameter Groups

Type Parameters

Methods and Operators

Writing Readable Functions

Summary

Exercises

First-Class Functions..... Cereeeeenen Ceeereeereeananes Ceereeeeneesnannans ..

Function Types and Values

Higher-Order Functions

Function Literals

Placeholder Syntax

Partially Applied Functions and Currying

By-Name Parameters

Partial Functions

Invoking Higher-Order Functions with Function Literal Blocks
Summary

Exercises

31
31
34
36
36
37
39
39
40
40
41
42

45
48
48
49
50
52
53
53
54
55
55
57
60
62
62

65
66
68
69
72
74
75
76
78
80
81

vi

| Table of Contents

6. CommMON COlleCtioNS. .o vvvreenrseeneersoreacasseonsessnsossncnnnns SYCTO S, 83

Lists, Sets, and Maps 83
What's in a List? 86
The Cons Operator 89
List Arithmetic 90
Mapping Lists 92
Reducing Lists 93
Converting Collections 98
Java and Scala Collection Compatibility 99
Pattern Matching with Collections 100
Summary 101
Exercises 102
7. More Collections.................. P PP T T .. 107
Mutable Collections 107
Creating New Mutable Collections 108
Creating Mutable Collections from Immutable Ones 109
Using Collection Builders 111
Arrays 112
Seq and Sequences 113
Streams 115
Monadic Collections 117
Option Collections 117
Try Collections 121
Future Collections 125
Summary 130
Exercises 131

Partll. Object-Oriented Scala

B, CdBSSES, . v v s nervenssninrionansonsiaeninssosnssnssss s sesoessesrveinssss 137
Defining Classes 142
More Class Types 146

Abstract Classes 146
Anonymous Classes 148
More Field and Method Types 149
Overloaded Methods 149
Apply Methods 150
Lazy Values 150
Packaging 151
Accessing Packaged Classes 152

Table of Contents | vii

9.

10.

A. Reserved Words

Packaging Syntax
Privacy Controls
Privacy Access Modifiers
Final and Sealed Classes
Summary
Exercises

Objects, Case Classes, and Traits.ooovnnnenianeenennes

Objects
Apply Methods and Companion Objects
Command-Line Applications with Objects
Case Classes
Traits
Self Types
Instantiation with Traits
Importing Instance Members
Summary
Break—Configuring Your First Scala Project
Exercises

Advanced Typing........ TU— e rner e ny re kit €

Tuple and Function Value Classes
Implicit Parameters
Implicit Classes
Types
Type Aliases
Abstract Types
Bounded Types
Type Variance
Package Objects
Summary
Questions

156
158
160
161
162
162

167
167
169
172
173
176
180
182
184
185
186
191

199
201
203
205
207
207
208
209
212
216
217
218

viii

| Table of Contents

PART I

Core Scala

TSN, T ARPDFIEE www. ertongbook. com

