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Preface

A study of this book, and especially the exercises, should give the reader a
_thorough understanding of a few basic concepts in analysis such as continuity,
convergence of sequences and series of numbers, and convergence of sequences
and series of functions. An ability to read and write proofs will be stressed. A
precise knowledge of definitions is essential. The beginner should memorize
them; such memorization will help lead to understanding. ‘

Chapter | sets the scene and, except for the completeness axiom, should be
more .or less familiar. Accordingly, readers and instructors are urged to move
quickly through this chapter and refer back to it when necessary. The most
critical sections in the book are Sections 7 through 12 in Chapter II. If these
sections are thoroughly digested and understood, the remainder of the book
should be smooth sailing.

The first four chapters form a unit for a short course on analysis. I cover these
four chapters (except for the optional sections and Section 20) in about 38 class
periods; this includes time for quizzes and examinations. For such a short course,
my philosophy is that the students are relatively comfortable with derivatives and
integrals but do not really understand sequences and series, much less sequences
and series of functions, so Chapters I--IV focus on these topics. On two or three
occasions 1 draw on the Fundamental Theorem of Calculus or the Mean Value
Theorem, which appear later in the book, but of course these important theorems
are at least discussed in a standard calculus class.

In the early sections, especially in Chapter 11, the proofs are very detailed with
careful references for even the most elementary facts. Most sophisticated readers
find excessive details and references a hindrance (they break the flow of the proof
and tend to obscure the main ideas) and would prefer to check the items mentally
as they proceed. Accordingly, in later chapters the proofs will be somewhat less
detailed and references for the simplest facts will often be omitted. This should
help prepare the reader for more advanced books which frequently give very brief
arguments. :



vi Preface

Mastery of the basic concepts in this book should make the analysis in such
areas as complex variables, differential equations, numerical analysis, and statis-
tics more meaningful. The book can also serve as a foundation for an in depth
study of real analysis given in books such as [2], [11].-[13], [14], [171, [19], and
[20] listed in the bibliography.

Readers planning to teach calculus will also benefit from a careful study of
analysis. Even after studying this book (or writing it) it will not be easy to handle
questions such as *“What is a number?"’, but at least this book should help givea
clearer picture of the subtleties to which such questions lead.

The optional sections contain discussions of some topics that I think are
important or interesting. Sometimes the topic is dealt with lightly and sugges-
tions for further reading are given. Though these sections are not particularly
designed for classroom ise, I hope that some readers will use them to broaden
their horizons and see how-this material fits in the general scheme of things.

1 have benefitted from numerous helpful suggestions from my colleagues
Robert Freeman. William Kantor, Richard Koch, and John Leahy, and from
Timothy Hall,Gimli Khazad, and Jorge Lopez. I have also had helpful conversa-
tions with my wife Lynn concerning grammar and taste. Of course, remaining
errors in grammar and mathematics are the responsibility of the author.
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CHAPTER 1
Introduction

The underlying space for all the analysis in this book is the set of real
numbers. In this chapter we set down some basic properties of this set.
These properties will serve as our axioms in the sense that it is possible to
derive all the properties of the real numbers using only these axioms.
However, we will avoid getting bogged down in this endeavor. Some
readers may wish to refer to the appendix on set notation.

§1. The Set N of Natural Numbers

We denote the set {1,2,3,...} of all natural numbers by N. Elements of N
will also be called positive integers. Each natural number n has a successor,
namely n+ 1. Thus the successor of 2 is 3, and 37 is the successor of 36.
You will probably agree that the following properties of N are obvious; at
least the first four are.

NI. 1 belongs to N.

N2. If n belongs to N, then its successor n+ | belongs to N.

N3. 1 is not the successor of any element in \.

N4. If n and m in N have the same successor, then n=m.

N5. A subset of N which contains 1, and which contains n+ | whenever it
contaius n, must equal N.

Properties N1 through N5 are known as the Peano Axioms or Peano
Postulates. It turns out that all the properties of \v can be proved based >n
these five axioms; see [3] or [15].

Let’s focus our attention on axiom NS5, the one axiom that may not be
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obvious. Here is what the axiom is saying. Consider a subset S of N as
described in N5. Then 1 belongs to S. Since S contains n+ 1 whenever it
contains n, it follows that S must.contain 2=1+ 1. Again, since S contains
n+ 1 whenever it contains n, it follows that § must contain 3=2+1. Once
again, since S contains n+ 1 whenever it contains », it follows that S must
contain 4=3+1. We could continue this monotonous line of reasoning to
conclude that S contains any number in N. Thus it seems reasonable to
conclude that S=N. It is this reasonable conclusion that.js asserted by
axiom NS5.
Here is another way to view axiom NS5. Assume axiom NS5 is false. Then

N contains a set S such that '

@) 1€,

(i) if n€ S, thenn+1€S,

and yet S#N. Consider the smallest member of the set (nEN:n& S}, call
it n,. Since (i) holds, it is clear that ny,# 1. So n; must be a successor to
some number in N, namely n,— 1. We must have n,—1E S since ny is the
smallest member of {(nEN: n& S). By (ii), the successor of ny— 1, namely
ng, must also be in S, which is a contradiction. This discussion may be
plausible, but we emphasize that we have not proved axiom N5 using the
successor notion and axioms N1 through N4, because we implicitly used
" two unproven facts, We assumed that every nonempty subset of N contains -
a least element ang we assumed that if ny71 then n, is the successor to
some number in N, :

Axiom NS is the.basis of mathematical induction. Let P, P,, P;,... be a

list of statements or propositions that may or may not be true. The
principle of mathematical induction asserts that all the statements P,, P,,
P,,... are true provided

(1)) P, is true,

() P,,, is true whenever P, is true.

We will refer to (I,), i.e., the fact that P, is true, as.the basis for induction
and we will refer to (I,) as the induction step. For a sound proof based on
‘mathematical induction, properties (I,) and (I,) must both be verified. In
practice, (I,) will be easy to check.

EXAMPLE 1. Prove 1 +2+ :-- +n=4n(n+1) for natural numbers 7.,

SoLuTioN. Our nth proposition is
P,;: “142+---+n=1in(n+1).”

Thus. P, asserts that 1=1-1(1+1), P, asserts that 1+2=1-22+1), Py,
asserts that 1+2+ --- +37=1.37(37+1)=703, etc. In particular, P, ls a.
true assertion which serves as our basis for induction.

For the induction step, suppose that P, is true. That is, we suppose

142+ -~ +n=1in(n+1)
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inrue.SinuwewilhtopmvePHfromthu we add 7+ 1 to both sides to

obtain
142+ - +n+(n+)=in(n+1)+(n+1)

=§[n(n+l)+2(n+l')]=§(n+l)(n+2)

=i(n+1)((n+1)+1).
Thus P, , holds if P, holds. By the pnnclple of mathematical induction,
we conclude that P, is true for all n. 0

We emphasize that prior to the last sentence of our solution we did not
prove “P, , | is true.” We merely proved an implication: “if P, is true, then
P,., is true.” In a sense we proved an infinite number of assertions,
namely: P, is true; if P, is true then P, is true; if P, is true then P; is true;
if P, is true then P, is true; etc. Then we applied mathematical induction
to conclude P, is true, P, is true, P, is true, P, is true, etc. We also confess
that formulas like the one just proved are easier to prove than to derive. It
can be a tricky matter to guess such a result. Sometimes results such as this

are discovered by trial and error.

EXAMPLE 2. All numbers of the form 7" —2" are divisible by 5.
SoLuTION. More precisely, we show that 7" —2" is divisible by 5 for each
n E€N. Our nth proposition is
P: “7"—2"is divisible by 5.”
The basis for induction P, is clearly true, since 7' —2'=5. For the induc-
tion step, suppose that P, is true. To verify P,,, we write
7n+l_2n+l=7n+l_7.2n+7_2n_2_2n
=7[T"-2"]+5-2"
Since 7" —2" is a multiple of 5 by the induction hypothesis, it follows that
7"*+1—-2"*1is also a multiple of 5. In fact, if 7" —2"=5m, then 7"*'—2"+!
=5[Tm+2"]. We have shown that P, implies P,,, and so the induc-
tion step holds. An application of mathematical induction completes the
proof. O

EXAMPLE 3. Show that |sin nx| < n|sin x| for all natural numbers » and all
real numbers x.
SoLuTiON. Our nth proposition is

P,: *“|sin nx| < n|sin x| for all real numbers x.”

The basis for induction is again clear. Suppose P, is true. We apply the
addition formula for sine to obtain

|sin(n + 1)x| = |sin(nx + x)| = |sin nx cos x + cos nx sin x|.

Now we apply the Triangle Inequality and properties of the absolute value
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[see 3.7 and 3.5] to obtain

sin(n+ 1)x| < [sin nx|-|cos x| + |cos nx|-|sin x|.

Since |cos y| <1 for all y we see that

|sin(n + 1)x]| < |sin nx|+ |sin x|.

‘Now we apply the induction hypothesis P, to obtain

|sin(n+1)x| < njsin x| +[sin x| = (n+ 1)|sin x|.

Thus P,,, holds. Finally, the result holds for all n by mathematical
induction. O

EXERCISES

I.1.
1.2,
1.3.
1.4.

1.5.
1.6
1.7.
1.8.

1.9.

- 1.10.

142.

Prove 12422+ -+~ +n?=n(n+1)}2n+1)/6 for all natural numbers n.
Prove 3+ 11+ -+ +(8n—5)=4n?— nfor all natural numbers 7.
Prove 12423+ :+» +n*=(14 2+ ---+ n)? for all natural numbers n.

(a) Guess a formula for 1+3+ --- +(2n— 1) by evaluating the sum for n=1,
2, 3, and 4. [For n=1, the sum is simply 1.]
(b) Prove your formula using mathematical induction.

Prove 1+ 1/2+i/4+ <+ +1/2"=2-1/2" for all natural numbers n.
Prove that (11)"—4" is divisible by 7 when n is a natural number.
Prove that 7"—6n— 1.is divisible by 36 for all positive integers n.

The principle of mathematical induction can be extended as follows. A list
P,. P, .1, Of propositions is true provided (i) P, is true, (ii) P4, is true
whenever P, is true and n> m.

(a) Prove that n>>n+1 for all integers n > 2.

(b) Prove that n! > n? for all integers n > 4. [Recall n!=n(n—1)---3-2-1; for
example, 5! =5-4-3-2-1=120.] .

(a) Décide for which integers the inequality 2" > n? is true.

(b) Prove your claim in (a) by mathematical induction.

Prove (Zn-+ D+@2n+3)+2n+5+---+@n—1)= 3n? for all positive inte-

gers n. !

. For each n€N, let'P, denote the assertion ‘“n*+5n+1 is an even integer.”

(a) Prove that P, is true whenever P, is true.
(b) For which n is P, actually true? What i§ the moral of this exercise?

For n€N, let n! [read “n factorial”] denote the product 1:2-3:--n. Also let
0!=1 and define

n! “for . k=0,1,...,n.

(Z)= K n—K)!
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The binomial theorem asserts that
(a+b)"=(3)a"+(?)a" 'h+('2')a"‘zbz+ +(nf l )ah"’ '+(:)b"
=a"+na" 'b+in(n—1)a" ">+ +nab" '+ b".

(a) Verify the binomial theorem for n=1, 2, and 3.
(b) Show that ()+(, ")=C"%") for k=1,2,....n
(¢) Prove the binomial theorem using mathematical induction and part (b).

§2. The Set Q of Rational Numbers

Small children first learn to add and to multiply natural numbers. After

subtraction 1s introduced. the need to expand the number system to

include 0 and negative integers becomes apparent. At this point the world

of numbers is enlarged to include the set Z of all integers. Thus we have
Z={0.1.=1.2.22,...}.

Soon thc space Z also becomes inadequate when dnmon is introduced:
The solution 15 to enlarge the world of numbers to include’all fractions.
Accordingly. we study the space Q of all rational numbers. i.e.. numbers of
the form m/n where m.n€ Z and n#0. Note that @ contains all terminat-
ing decimals such as 1.492= 1492 /1000. The connection between decimals
and real numbers is discussed in 10.3 and §16. The space Q is a highly
satisfactory algebraic system in which the basic operations addition., multi-
plication. subtraction and division can be fully studied. No system s
perfect, however, and @ is inadequate in some wayvs. In this section we will
consider the defects of @. In the next section we will stress the good
features of @ and then move on to the system of réal numbers.

The set @ of rational numbers is a very nice algebraic svstem until one
tries to solve equations like x*=2."It turns out that no rational number
satisfies this equation and' yet there are good reasons to believe that some
kind of number satisfies this equation. Consider, for example. a square
with sides having length one: see Figure 2.1. If d represents the length of
the diagonal. then from geometry we know that I’+1°=d? ie. d*=2.

[« 1w A

4 — St

Figure 2.1
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Figure 2.2

Apparently there is a positive length whose square is 2,-which we write as

.But y2 cannot be a rational number, as we will show in Example 2. Of
course, y2 can be approximated by rational numbers. There are rational
numbers whose squares are close to 2; for example, (1.4142)> = 1.99996164
and (1.4143)>=2.00024449.

It is evident that there are lots of rational numbers and yet there are
“gaps” in Q. Here is another way to view this situation. Consider the graph
of the polynomial x?—2 in Figure 2.2. Does the graph of x>—2 cross the
x-axis? We are inclined to say it does, because when we draw the x-axis we
include “all” the points. We allow no “gaps.” But notice that the graph of
x2—2 slips by all the rational numbers on the x-axis. The x-axis is our
picture of the number line and the set of rational numbers again appears to
have significant “gaps.”

There are even more exotic numbers such as 7 and e that are not
rational numbers, but which come up naturally in mathematics. The
number « is basic to the study of circles and spheres and e arises in
problems of exponential growth.

We return to 2 . This is an example of what is called an algebraic
number because it satisfies the equation x> —2=0.

2.1 Definition. A number is called an algebraic number if it satisfies a
polynomial equation

ax"+a, x"'+---+ax+a,=0
where the coefficients a,,a,,...,a, are integers, a,70 and n > 1.

Rational numbers are always algebraic numbers. In fact, if r=m/nis a
rational number [m,nE€7Z and n+0]}, then it satisfies the equation nx—m
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=0. Numbers defined in terms of Y , >/, etc. [or fractional exponents, if
you prefer] and ordinary algebraic operations on the rational numbers are
invariably algebraic numbers.

ExampLE 1. 4/17, 32, (17)'/3, 2+5'/%)'/2 and ((4—2-3'/%)/7)'/? all
represent algebraic aumbers. In fact, 4/17 is a solution of 17x —4=0, 3'/2
represents a solution of x2—3=0, and (17)'/? represents a solution of
x3—17=0. The expression a=(2+5'/%)'/? means a*=2+5'3 or a*-2
=53 g0 that (a*—2)’=5. Therefore we have a®—6a*+124*—13=0
which shows that a=(2+5'/3)!/2 satisfies the polynomial equation x®—
6x*+ 12x*—13=0. Similarly, the expression b= ((4 —2-3'/2)/7)'/? leads to
7b2=4-2-3'/2 hence 2-3'/2=4—7b?, hence 12=(4—75%?, hence 49b* —
56b%+4=0. Thus b satisfies the polynomial equation 49x*—56x*+4=0.

The next theorem may be familiar from elementary algebra. It is the
theorem that justifies the following remarks: the only possible rational
solutions of x>—7x2+2x—12=0 are +1, +2, +3, +4, +6, +12 and so
the only possible (rational) monomial factors of x*—7x%+2x—12 are
x—lLx+1,x—2,x+2,x—3,x+3, x—4,x+4,x—6,x+6,x— 12, x+12.
We won’t pursue these algebraic problems; we merely made these observa-
tions in the hope that they would be familiar.

The next theorem also allows one to prove that algebraic numbers that
do not look like rational numbers are not rational numbers. Thus V4 is
obviously a rational number, while y2, y3, V5, etc. turn out to be
nonrational. See the examples following the theorem. Recall that an integer
k is a factor of an integer m or divides m if m/k is also an integer. An
integer p > 2 is a prime provided the only positive factors of p are 1 and p.
It can be shown that every positive integer can be written as a product of
primes and that this can be done in only one way.

2.2 Rational Zeros Theorem. Suppose that ay, a,,...,a, are integers and that
r is a rational number satisfying the polynomial equation

ax"+a, x" '+ +ax+ay;=0 0]

where a,%0 and n>1. Write r=p/q where p,q are integers having no
common factors and q#0. Then q divides a, and p divides a,.

In other words, the only rational candidates for solutions of (1) have the
form p/q where p divides a, and ¢ divides a,,.

PrOOF. We are given

n n-1
a,,(ﬁ) +a,,_,(£) +---+a,(£)+ao-0.
"\ q 9 q
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We multiply through by ¢” and obtain

ap"+a, p gt a, ,p" g+t ayp’q” CHapg” '+ ag"=0.
(2]

If we solve for a,p”, we obtain

ap"==q[a, P " Ha, ap" gt ayp'q” Thapg" i Hag .
It follows that g divides a,p". But p and g have no common factors and so
q must divide a,. [Here are more details: p can be written as a product of
primres p, p,---p, where the p’s need not be distinct. Likewise g can be
written as a product of primcs ¢,g,¢ - g,. Since g divides a,p”, the quantity
a,p"/q=a,p!- - p/(q, -~ q,) must be an integer. Since no p, can equal any
g;» the unique factorization of a, as a product of primes must include the
product ¢,4,-* ¢,. Thus g divides a,.]

Now we solve (2) for ayg” and obtain

aq"==—pla.p" '+a,.,p" g+ kapq” Ptag ]

Thus p divides a,¢". Since p and ¢ have no common factors, p must divide
a,. 0

EXAMPLE 2. y2 cannot represent a rational number.

PrOOF. By Theorem 2.2 the only rational numbers that could possibly be
solutionsof x2—2=0 are + 1. =2. [Here n=2. a,=1, a,=0. gq,= —2. So
rational solutions must have the form p/g where p divides a,= —2 and ¢
divides a,=1.] One can substitute each of the four numbers =1, *2 into
the equation x*~2=0 to quickly eliminate them as possible solutions of
this equation. Since 2 - represents, a solution of x*-2=0. 1t cannot
represent a rational number. ' =]

ExAMPLE 3. Y17 cannot represent a rational number.

PROOF. The only possible rational solutions of x’—17=0are = 1. =17 and
none of these numbers are solutions. a

EXAMPLE 4. 6'/3 cannot represent a rational number.

PrOOF. The only possible rational solutions of x*—6=0are +1, 2. *3.
+6. It is easy to verify that none of these eight numbers satisfies the
equation x> —6=0. O

EXAMPLE S. a=(2+5'/%)"2 does not represent a rational number.

PrROOF. In Example 1 we showed that a represents a solution of x®—6.x*+
12x2—13=0. By Theorem 2.2.'the only possible rational solutions are = 1.
+13. When x=1 or — 1. the left hand side of the equation 1s —6 and
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when x=13 or — 13, the left hand side of the equation turns out to equal
4,657.458. This last computation could be avoided by using a httle
common sense. Either observe that a i1s “obviously™ bigger than | and less
_than 13, or observe that

136—6-13°+12-137 - 13=13(13° - 6-13°+ 12- 13- 1)#0

since the term in parentheses cannot be zero: it is one less than some
multiple of 13. 0

EXAMPLE 6. b=((4—2y3 )/7)"/? does not represent a rational number.

PrOOF. In Example | we showed that b is a solution of 49x* — 5657 +4=0.
The possible rational solutions of this equation are =1, +=1/7, =1/49,
+2, x2/7,. +2/49, x4, *4/7. +4/49. To complete our proof all we
need to do is substitute these .eighteen candidates into the equation
49x*—56x2+4=0. This prospect is so discouraging. however. that we
choose to find a more clever approach. In Example 1. we also showed that
12=(4—7b%?2. Now if b were rational. then 4 — 7h* would also be rational
. [Exercise 2.6] and so the equation 12= x? would have a rational solution.
But the only possible rational solutions to x*—12=0 are +1, 2. =3,
+4, =6, +12 and these can all be eliminated by mentally substituting
them into the equation. We conclude that 4—7h* cannot be rational and
so b cannot be rational. ) O

As a practical matter. many or all of the rational candidates given by
the Rational Zeros Theorem can be eliminated by approximating the
quantity in question [perhaps with the aid of a calculator]. It is nearly
obvious that the values in Examples 2 through 5 are not integers while all
the rational candidates are. My calculator says that 4 in Example 6 is.
approximately .2767; the nearest rational candidate is +2/7 which is
approximately .2857.,

EXERCISES
2.1. Show that V3.5, /7. /24, and /31 are not rational numbers.

2.2. Show that 2'/3, 5'/7"and (13)'/* do not represent rational numbers.
2.3. Show that 2+ ﬂ—)”z does not represent a rational number.
2.4. Show that (5—3)'/? does not represent a rational number.

2.5. Show. that [3+y2 J*/* does not represent a rational number.

2.6. In connection with Example 6, discuss why 4—7b% must be rational if b is
rational. . : J
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§3. The Set R of Real Numbers

The set Q is probably the largest system of numbers with which you really
feel comfortable. There are subtleties but you have learned to cope with
them. For example, Q is not simply the set {m/n:m,n €1, n+0} since we
regard some pairs of different looking fractions as equal. For example, 2/4
and 3/6 are regarded as the same element of Q. A rigorous development
of Q based on Z, which in turn is based on N, would require us to
introduce the notion of equivalence class; see [19]. In this book we assume
a familiarity with and understanding of Q as an algebraic system. How- -
ever, in order to clarify exactly what we need to know about Q, we set
down some of its basic axioms and properties.

The basic algebraic operations in Q are addition and multiplication.
Given a pair a, b of rational numbers, the sum a+ b and the product ab
also represent rational numbers. Moreover, the following propesties hold.

Al. a+(b+c)=(a+b)+c for all a, b, c.

A2. a+b=b+a for all a, b.

A3. a+0=a for all a.

A4. For each a, there is an element —a such that a+(— a)=0.
M1. a(bc)=(ab)c for all a, b, .

M2. ab=ba for all q, b.

M3. a:1=a for all a.

M4. For each a#0, there is an element a ' such that aa~'=1.
DL. a(b+c)=ab+ac for all a, b, c.

Properties Al and M1 are called the associative laws and properties A2 and
M2 are the commutative laws. Property DL is the distributive law; this is the
least obvious law and is the one that justifies “factorization” and “mul-
tiplying out” in algebra. A system that has more thah one element and
satisfies these nine properties is called a field. The basic algebraic proper-
ties of Q can be proved solely on the basis of these field properties. We do
not want to pursue this topic in any depth, but we illustrafe our claim by
_proving some familiar properties in Theorem 3.1 below.
The set Q also has an order structure < satisfying

Ol. Given a and b, either a< b or b< a.
02. If a< b and b< a, then a=b.

03. Ifa<band b<c,thena<c.

O4. If a< b, then a+c<b+c.

0S5. If a< b and 0< ¢, thén ac < be.

Property O3 is called the transitive law. This is the characteristic property
of an ordering. A field with an ordering satisfying properties Ol through
OS5 is called an ordered field. Most of the algebraic and order properties of
Q can be established for any ordered field. We will prove a few of them in
Theorem 3.2 below. :



