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Foreword

This book is intended as an introduction to the study of radioactivity and
to give an idea of its many diverse applications in the field of engineering.
An attempt has been made to cover all the relevant areas of the subject,
including the types of radiation, the means of detection, the analysis of
decay schemes and the necessary safety precautions. To cover all these
topics in a book of this size means that the treatment of them must be
brief, and for this reason many references are included to books and articles
in which the reader will find more detailed information.

The chapters on the industrial and engineering uses of radioisotopes are
again intended as a guide to the types of problems where such uses are of
great benefit. Again, many references are given to more detailed accounts
of such applications.

It is hoped that the text will be suitable for readers engaged in any of the
fields of engineering. One difficulty in such an approach is the standardiza-
tion of units. In general, the units used in the book are those most widely
used in the particular application described. For example, reaction cross-
sections are quoted in barns, rather than in square metres, and the unit of
electron volt is used throughout for radiation energies.
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saturation activity

specific activity

triton

statistical ¢ factor

time
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radioactive decay constant
mean free path

partial decay constant
linear absorption coefficient
mass absorption coefficient
frequency

density

reaction cross-section
standard deviation

fission cross-section
macroscopic reaction cross-
section

mean life

flux of incident radiation
solid angle

The symbols, units and Nomenclature used in this book are those recom-
mended by the International Union of Pure and Applied Physics, adopted
by its General Council in 1965. These recommendations are in general
agreement with those of the following organizations:

1. International Organization for Standardization, Technical Com-

mittee 1.S.0./T.C.12

2. General Conference on Weights and Measures (1948, 1954, 1960,

1964)

ol

International Union of Pure and Applied Chemistry

4. International Electrotechnical Commission, Technical Commit-

tees: I.E.C./T.C. 24, 45

5. International Commission on Illumination
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Miscellaneous Information

Planck’s constant, 7 = 6:6256 x 10727 erg s.

1 barn = 10~ 24 cm?.

Avogadro’s number, N, = 6:0225 x 10?* atoms per gramme atom.
1 u=16575%x10"2% g = 931459 MeV.

Mass of electron = 0-0005486 u.

Energy equivalent of electron mass = 0-51 MeV.
Charge on electron, e = 1-04 x 10~ *° coulomb.

1 electron volt = 1-602 x10~12 erg = 1517 x 10~ 22 Btu.
1erg = 1077 joule = 6:71 x10? u.

Energy required to produce an ion-pair in air = 32:5 eV.
1 curie = 3-7x10'° d/s = 2:22 x 10° d/min.

1 day = 8-64 x 10* s.

1 week = 6-048 x 10° s.

1 year = 3-1536 x 107 s.

1 réntgen = 2-083 x 10'° ion-pairs/cm? of air.

1 &ngstrom unit = 10~ '° m.

1 micron = 10~¢ m.

1 metre = 3-28 ft = 39:37 in.

1 cubic metre = 35-315 ft* = 1-308 yd?.

1 cubic centimetre = 0-061 in?3.

1 litre = 0-22 gal = 10% cm?® = 0-0353 ft>.

1 kilogram = 2:679 lb.
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1 Radioactivity

INTRODUCTION

With almost any engineering method it is possible to use specific techniques
without appreciating the underlying physical principles involved. This is
especially true of non-destructive and measurement techniques using radio-
active isotopes, and doubtless there are many shop floor technicians who
are able to make use of particular radioisotopes for certain jobs without
too much worry about fundamentals. It is not until the new problem
emerges, the difficult measurement has to be made, that the necessity of a
fundamental knowledge is fully realized. New techniques and new devices
must spring from such a background. With radioisotope techniques in
particular, there is an even more potent argument for full understanding.
Radioactivity, wrongly used, can be dangerous. It must be handled with
care and the full implications of its effects kept in mind at all times.

For these reasons it was decided, when writing this book, to include a
brief introduction to the phenomenon of radioactivity and its sources. Thus
in the later chapters, when specific techniques and industrial uses are
described, the reader will better appreciate the reasons behind the particular
choice of parameters.

ATOMIC STRUCTURE

It is assumed that the reader is familiar with the simple concept of atomic
structure, as suggested by the Bohr model. In this model the atom is
considered as being composed of a central nucleus with a diameter of the
order 1012 cm, surrounded by a number of electrons in closed orbits
about the nucleus. These orbits have diameters of about 10-® cm. The
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orbital electrons are grouped in shells by various quantum restraints on
the structure. In a consideration of radioactivity, we are not concerned
with this extra-nuclear structure, at least for our present purposes. The
important point about this model is the electrical neutrality of the atom
as a whole.

For our present purposes the nucleus itself can be considered as com-
posed of a number of particles of two distinct kinds. These are the proton,
which carries a positive unit charge, +e, and the neutron which is un-
charged.

Consider that in a particular atom there are Z electrons, each carrying
a charge —e, orbiting around the nucleus, and that the nucleus is composed
of N neutrons and P protons. The condition of electrical neutrality for the
atom as a whole yields Pe—Ze = 0, i.e. the number of protons in the
nucleus is equal to the number of orbital electrons.

The number Z is known as the atomic charge or atomic number of the
atom, and Z+ N as the atomic mass number, usually denoted by A. The
parameters A and Z completely define a particular atomic species, this
being known as a nuclide.

There have been several re-definitions of mass scales over the years, and
quite a bit of confusion over terminology. Nowadays, the scale on which
the masses of nuclides are measured is in terms of the unified atomic mass
unit,* with the symbol u. This is defined as the unit of mass equal to one-
twelfth the mass of an atom of carbon of atomic mass number 12. This
gives 1 u as 1:6575x 10-2% g. On this scale the mass of the neutron is
1-008665 u, the mass on the proton 1-007825 u, and the mass of the electron
0-0005486 u.

From the definition of the mass scale, giving proton and neutron masses
of the order unity, it is clear that the atomic mass number will be a whole
number approximation to the nuclidic mass in u. For example, a nuclide
of magnesium which contains 12 protons and 12 neutrons has A = 24, and
a nuclidic mass of 23-985045 u. The difference between the nuclidic mass
and the atomic mass number is called the mass excess. A table of mass
excesses, based on a value of zero for the carbon-12 nuclide, is given in
reference’.

The chemical properties of the atom, and hence its designation as a
particular element, depend upon the number of orbital electrons, i.e. on
the atomic number Z. Given Z, the element is uniquely defined. As an
example, if a given atom has two orbital electrons it must be helium
(assuming that the atom is not ionized or in some similar non-equilibrium

* This replaces the pre-1961 atomic mass unit (amu) which was based on 160 rather
than 12C. 1 u = 1-00031792 amu,
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state). Similarly an atom with 8 electrons must be oxygen. By increasing
Z step by step, it is possible to build up the periodic table of elements, given
in Table 1.1.

A particular nuclide is denoted by

4X

V/

where X takes the place of the element symbol. But as Z determines the
element, Z and X denote the same thing. Thus the shorthand can be
amended to 4X. For example, a certain nuclide has six neutrons and six

protons. Table 1.1 shows that the element with Z = 6 is carbon. Therefore
this nuclide can be written 12C, or carbon-12.

e electron
@ proton
(O neutron
- -e -e
‘-'-e . +e O.+e
m O @)
2m 3m
hydrogen deuterium tritium
nucleus 1H , proton nucleusle , deuteron nucleus 1H ,triton

FiG. 1.1 The three isotopes of hydrogen

For each element (determined only by Z) there are several nuclides
(determined by Z and A) that have the same Z value but different values
of A. These different nuclides of the same element are called isotopes.

Consider the simplest element, hydrogen with Z = 1. Three isotopes
are known, with atomic mass numbers of 1, 2 and 3. As Z must remain
constant at 1, this means that they have 0, 1 and 2 neutrons respectively.
This is illustrated in Fig. 1.1. These isotopes all act chemically as hydrogen,
but their nuclidic masses are different. The nuclidic mass of 'H is 1-007825
u, that of 2H (known as deuterium) is 2-014102 u, and that of 3H (known
as tritium) is 3-016049 u. The abundance of deuterium is 0-0156 per cent,
and tritium is an artificially produced isotope, not occurring naturally.

The atomic weight of an element is defined as the combined nuclidic
masses of all the isotopes, weighted according to their natural relative
abundances. It is denoted by A,,. In the case of hydrogen it follows that
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the atomic weight is
1-007825 (0-9844)+2-014102 (0-0156) + 3-:016049 (0) = 1-00797

It will be noticed that the masses of the hydrogen isotopes are not
obtained by simple addition of neutron masses. For example, the nuclidic
mass of 'H plus a neutron is 2-016490 u, yet the mass of deuterium is
2-:014102 u. This is a difference of Am = 0-002388 u, called the mass defect.
This is because when a proton and a neutron are brought together to
form a deuteron (the nucleus of deuterium), energy is released in order to
bind them together. Conversely energy must be supplied to split them
apart. This required energy, the binding energy, is obtained from Einstein’s
equation for the conversion of mass into energy,

E = Amc? (1.1)

where here Am is the mass defect.

All energies of emitted radiation and particles, as well as the various
atomic and nuclear energy levels, are quoted in terms of the electron volt,
eV. This is the energy that would be acquired by an electron in falling
through a potential difference of one volt. From this definition the relation-
ship between other well-known units of energy can be established. In fact,

1eV=1602x10"12 erg = 1:602x 10~ '? joule (1.2)

For nuclear energy levels, and radiation energies, the electron volt is
usually an inconveniently small unit. The units MeV and keV are then
used for 10° eV and 103 eV respectively. Using equation 1.1, with the

information that ¢ = 2:99793x10'° cm/s, and 1 u = 1-0003179 g, then
the energy equivalent of 1 u is given by

1 u=931-459 MeV (1.3)
In words this means that if say an electron, of mass 0-0005486 u, were

completely annihilated, the energy released would be approximately 0-511
MeV. Examples of the use of this relationship are given later.

Example 1.1 Estimate the atomic weight of naturally occurring magnesium,
given that the percentage of each isotope in the natural isotopic mixture is
as follows:
Isotope 2*Mg Mg ?°Mg
Percentage abundance 78-6  10-1 11-3

Atomic weight of magnesium is approximately
24(0-786)+25(0-101) +26 (0-113) = 24-32.
This is the figure given in Table 1.1. The approximation arises because, as
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the atomic mass scale is based on carbon, the atomic nuclidic masses are
slightly different from the integer values of the atomic mass number. For
instance, as seen previously, for magnesium-24, the nuclidic mass is
actually 23-985045 u.

PROBLEMS

What are the elements $9X, 14X, 8X, X, 235X ?

1.2 Lithium has two main isotopes, °Li and "Li, of relative abundance,
7-4 per cent and 92:6 per cent respectively. What is the atomic
weight of the natural isotopic mixture ?

1.3. TIron has four naturally occurring isotopes, **Fe, *°Fe, 3" Fe and *®Fe.
If the relative abundances of the last three nuclides are 91-52 per cent,
2:245 per cent and 0-33 per cent respectively, and the atomic weight
of the natural isotopic mixture is 55-85, what is the percentage
abundance of **Fe?

There are two other terms that are associated with the numbers A and
Z, though not of such general use as nuclide and isotope. Different
nuclides having the same value of A are called isobars, and different
nuclides having the same value of 4—Z are called isotones. This latter
definition is the neutron analogue of isotope.

PROBLEMS

1.4. Fill in the blanks, using Table 1.1.
*Cu o 1oNe

1.5. State whether the following pairs are isotopes, isobars, or isotones.
14C 14N. 13N 14N. ISN 160. 14C ISN. ZSMg 24-Mg

RADIOACTIVITY AND RADIATION

By definition, isotopes have different ratios of neutrons to protons in the
nucleus. Some ratios give rise to unstable conditions. This is usually
through the neutron to proton ratio being too large. Because of this
instability, the nucleus changes its state to attain equilibrium, and in so



