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FOREWORD

Nonlinearities in structural problems can arise in several ways. The material behavior
can be nonlinear so that the generalized Hooke’s Law is not valid. Alternatively, while
the material behavior may be assumed as linear, the strain-displacement relations may
become nonlinear due to large deformations. Finite rotations and a number of other
factors present in real engineering situations also introduce nonlinearities into structural
problems. These problems generally present several difficulties because they are complex
and the advantages of uniqueness and superposability of solutions characteristic of
problems governed by linear governing equations do not exist in the case of those prob-
lems governed by nonlinear equations. As a result, several approximate techniques have
so far been used to find acceptable solutions to several nonlinear structural problems.
However, several such solutions to nonlinear problems are mainly concerned with geome-
tric-type nonlinearity due to finite displacements or rotations.

A practicing engineer is often called upon to design structures that will be fabricated
using new materials or fabrication techniques. These new materials, in many cases, do
not exhibit linear material behavior. Recognizing the need within the engineering com-
munity for a better understanding of the behavior of structural systems subjected to
this type of material nonlinearity, the Shock and Vibration Committee of the Applied
Mechanics Division decided in late 1983 to organize a symposium to be held at the 1985
Winter Annual Meeting of the Society. Papers dealing with analytical, numerical as well
as experimental approaches were solicited. To sharpen the focus of te symposium, most
of the papers were limited to dynamic problems.

This symposium volume, which contains ten papers, deals with a variety od problems
in material nonlinearity. They are concerned with bimodular structures behaving dissimi-
larly in tension and compression, elasto-plastic dynamic behavior of plate and shell struc-
tures, response of structures to pulse loading in which plastic deformations in the first
phase of response lead to compressive forces in the subsequent motion, material and
structural loss factors and the implications of linear and nonlinear material damping, the
effects of hysteretic dissipation on the forced vibration resonance motion, probabilistic
characterization of a damaged structure, effects of nonlinearity on vibration properties
and planar mechanism analysis with material nonlinearity. It is hoped that this publica-
tion will provide researchers with a reasonably comprehensive treatment of the progress
made in this area as well as generate interest among those researchers who are new to
this field.

The editor is grateful to the authors for their contribution and co-operation in pre-
paring this publication, the Chairmen and Vice-Chairmen of the two symposium sessions,
the Shock and Vibration Committee and the Applied Mechanics Division for sponsoring
this symposium, the Department of Mechanical and Industrial Engineering of Clarkson
University for providing facilities to organize the Symposium and to Professor Art Leissa
of the Ohio State University for his encouragement and assistance in all phases of the
Symposium.

M. Sathyamoorthy

Clarkson University
Potsdam, New York
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SHEAR-BAND INSTABILITY OF NON-ASSOCIATIVE ELASTO-PLASTIC MATERIALS BY
STATIONARY WAVE ANALYSIS

J. -G. Beliveau
Department of Civil Engineering
University of Vermont
Burlington, Vermont

H. A. Hassani
Departement de genie civil
Universite de Sherbrooke
Sherbrooke, Quebec, Canada

ABSTRACT

A quasi-steady approach to material instability has recently been proposed
for strain rate independent constitutive laws. The matrix equations developed
correspond to those obtained by a three-dimensional wave propagation analysis for
a stationary wave of an elasto-plastic material. The problem is reformulated to
determine at which hardening a physically realistic direction of propagation is
obtained to yield a zero eigenvalue of the resultant matrix which incorporates
objective stress derivatives. The numerical study confirms previous results for
incompressible associative material in plane strain, results for incompressible
non-associative behavior also in plane strain, and approximate results for gener-
al three-dimensional behavior.

NOMENCLATURE

3> 375 3, : coefficients of stability polynomial

[B] : stability matrix

: wave propagation speeds

: determinant

: Young's modulus of elasticity
i5ke : elasticity tensor

: yield function

: flow potential for plastic deformation
: shear modulus of elasticity

: hardening modulus

: non-dimensional hardening parameter

: first invariant of stress tensor

: second invariant of deviators stress tensor

C_,_Jn—cIJ'G)LQ—h mmoo

=
~nN

: parameter in yield function
i.d.k,2 : indices

Lijkz : tensor relating Cauchy stress rate with Eulerian strain rate
Mijkz : tensor incorporating rotation terms
M : ratio of direction cosines

N : ratio of direction cosines



NysNysng : direction cosines of normal to plane wave

s : deviatoric stress tensor

iij : intrinsic derivative of nominal stress

t : time .
u,v : material displacement and velocity

{y} : eigenvector

o : parameter in yield function of Drucker-Prager
B : parameter in plastic potential function

Y : scalar multiplier for plastic deformation

P : material density

g : Cauchy stress

g : Jaumann co-rotational rate of Cauchy stress
o : material stress rate

€ : strain
u,u* : shear moduli

de,dee,dep : total, elastic, and plastic strain rate increment
A : Lamé constant

A : eigenvalue
v : Poisson's coefficient
INTRODUCTION

Conditions for localization of deformation in the form of a shear band have
been developed for materials having fairly general constitutive relationships
(1,2). Shear band instability criteria for plane strain situations for incom-
pressible materials with an associative flow rate were presented (3) and gener-
alized to non-associative elasto-plasticity of incompressible material (4).
There is considerable interest in this phenomenon, particularly with regards to
geotechnical materials including soils, where the material is not incompressible,
nor does it satisfy the normality rule (5,6,7,8).

Though the analysis presented in these papers is quasi-static, it has long
been established that instability considerations for material behavior may be
investigated within a dynamic context by considering wave propagation velocities
(8,9,10,11). A zero wave velocity corresponds to instability. This is the ap-
proach used in this article. Though a general elasto-plastic model is used,
strain rate effects are not considered. Only localized instability in the form
of a shear band is considered, the basic premise being that, though the state of
stress may be determined by particular conditions, such as plane stress, plane
strain, uniaxial tension, etc., the material constitutive behavior is character-
ized in three dimensions, the shear band being a localized phenomenon.

First, we summarize the wave propagation analysis for instability. The two
procedures proposed determine critical parameters and the orientation of the nor-
mal to the planar wave front. Numerical simulations are compared to previous re-
sults limited to incompressible associative material in plane strain (3), incom-
pressible non-associative material also in plane strain (4), and approximate re-
sults for general non-associative behavior in three dimensions based on a quasi-
static approach (1,2).

INCREMENTAL ELASTO-PLASTICITY

The incremental form of constitutive relations applicable to large strains

v
%35 = Lijke 95ke (M
in which the Eulerian strain rate increment, de, is assumed to be a linear sum
of elastic, de®, and plastic, deP, components

are

= de® p
da'ij dE'ij + deij (2)



de is defined as

E)V,i avj) (3)
(—+ = 3
ij Bxi

for v the material velocity. The tensor L corresponds to the Drucker-Prager
model in plastic loading (12)

| —

de.. =
1
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ijtu 90, 9o rskf
L =E _ tu rs (4)
ijke ijke h+ of E 9g

acmn mnpq Bcpq

f, g, and h are the yield function, plastic potential and hardening, respectively

f = ’ J2 +a 11 -k=0 (5)
g = ‘, J2 + B I.I -k (6)

h= - of , 3f 3k a9 (7)
3P, K geP [ 3955
ij ij
P _ ag
deij Y acij (8)
in which y 1is a constant, B = o implies associative behavior and
=1
Jp = 7545 Sij (9)
I] = Ok (10)
13
137 %5 73 % t
of 593
= — 4+ ¢ 6., (12)
iy,
S..
a9 1]
= —=+ B 6§.. (]3)
% /I, 1
§.. is the Kronecker delta
1] .. = { 1 j=1 (14)
ij s .
0 J# i

WAVE PROPAGATION

The incremental small displacements on large deformations satisfy the equa-
tion (10) 2
a’ci. 3%v;
J = [¢] 7 (15)

9X.
J

in which p 1is the density and t is the intrinsic derivative of t , the nom-
inal stress tensor. For a uniform stress field, it can be shown that the intrin-
sic derivative of t is related to the material derive of Cauchy stress, o, (1;)

at,.  36. .
J_ 1] (16)
axj axj

the latter being related to the Jaumann co-rotational rate of stress (1,2)



g
ij
in which the rotation tensor is given by

= o‘ij + cikaj - Q'ikokj (17)
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The material velocity, v, of a plane wave propagating along a direction given by
direction cosines nys Ny and ny is assumed to be a function of the independent

parameter, ¥
Y= XqNp + XNy + Xaa - C t (19)

in which ¢ is the propagation velocity. Introduction of Eqns.(16-19) and (1-14)
into Eqn.(15) yields the following eigenvalue problem

[t81 - 111] 1y} = (0} (20)
n whieh A =0 el i=1,2,3 (21)
Bie=Mijke "M (22)

) 1
Miske = Lijke * 7 520k + 840%5k ~ S5k~ Sik%50)  (23)
2
9 V.
and yi = ; (28)
30

The three eigenvalues depend on the material parameters and the direction of pro-
pagation. In the case of a linear elastic material satisfying Hooke's law,

E =AG6..8 , + G(S,

ijke i3%e ikS3e * Siglsi)
The three velocities are given by

e = ’ A ; 2G (26)
Cp =C3= ‘/G/p (27)

A and G are the Lamé constants related to Young's modulus of elasticity, E ,
and Poisson's coefficient, v.

(25)

B~ e L2
Ev
R (FO ) (29)

For waves propagating in the plane of a plate, satisfying the plane stress
assumptions, and for Tongitudinal waves in a bar, the wave velocities obtained by
imposing appropriate boundary conditions are (lﬁ)

46 (A + G
€y 1 (A'T(r 2—T_E 2) (30)
cs J E/p (31)

<y is for waves in the plate and Cg is for Tongitudinal waves in the bar.
MATERIAL INSTABILITY

For a stationary discontinuity, the determinant of [B] , Egn.(20), is zero
(10), yielding the same result as obtained from quasi-static considerations (1,2).
Thus, given a particular direction, instability is defined when at least one of
the eigenvalues of [B] is zero. Alternatively, setting the determinant equal to
zero yields a polynomial of order six in Nys Ny and ns- The material is locally



unstable when one of the solutions to the polynomial yields real va]ugs fgr s
Nos Nas i.e., loss of ellipticity in a quasi-static approach to localization (15).

For a given loading and stress Tevel and the material constants, G, v, p,
a, B and k, the determinant is a function of the three direction cosines and the
hardening modulus, h.

Due to the following equality for the direction cosines,

2 2 2

ny +n, +ng =1 (32)
the determinant may be considered to be a function of three parameters

D(H, N, M) = [B] =0 (33)
in which N = n]/nz (34)

M= n3/n2 (35)

H=h/G (36)
The optimum hardening for instability is then obtained by satisfying Eqn.(33) and
(13) 3D

v = 0 (37)

3D _

=0 (38)

Eqns.(33),(37) and (38) are then three nonlinear equations for the three unknowns
N, M, and H.

A second method for determining instability is possible in instances for
which M is set equal to zero. In certain applications, there are physical rea-
sons to choose the direction of the perpendicular to the shear band as being in a
particular plane, Ny = 0. Eqgn.(33) then yields a sixth order polynomial in N

6 5 4 3 2 1

N® + a5N + a4N + a3N + aZN + a1N +a, = 0 (39)

Instability corresponds to a real root to this polynomial.
NUMERICAL RESULTS

The shear band geometry for n3 = 0 appears in Fig. 1, in which the direction
cosines of the unit normal to the shear band are shown. For uniaxial Toading in
tension of an incompressible associative material in plane strain, real and imagi-
nary portions of the solution to Egn.(39) are shown in Fig. 2, corresponding to
the six roots which, when the material is stable, occur in complex conjugate pairs.

Two of the three eigenvalues of the matrix [B], Egn.(20), evaluated at the
angle of instability corresponding to the real part of N at the critical hard-
ening, here N = 1, are shown in Fig. 3. The third eigenvalue is not shown, due to
the incompressibility assumption. The lowest eigenvalue becomes zero at a crit-
ical hardening of zero. Finally, stability boundaries (H is hyperbolic or uns-
table) are shown in Fig. 4, along with parameters determined by a two-dimensional
plane strain criterion in which p and p* are defined (3)

v -
oy - 222 = 2p* (degy - deyy) (40)
&, 2u de, (41)

as elements of the elasto-plastic tensor. For large hardening modulus, the mate-
rial is stable and it becomes unstable at h = 0.

The stability boundary for incompressible materials in uniaxial loading

(0, = 0), having a non-associative (a # B = 0) flow rule, are determined by the
eqaation (4) 2
- u* 1 80y 2 9
_lI <7(] +ﬁ)— (] -8 )(1 —Zu—z) (42)



in which the parameter &8 1is evaluated at the critical hardening ratio, H

3a
§ =+ T+H (43)
The plus and minus sign apply for tension and compression, respectively. For §
equal to zero, Eqn.(42) yields the associative stability boundary shown in Fig.4.
Again, for decreasing values of hardening, the material goes from the stable do-
main to the unstable domain with the transition occuring at the critical harden-
ing parameter, as shown in Fig. 5.

As a third example, an appgoximate criterion for the critical hardening
parameter, H, based on assuming & ~ &, for general three-dimensional behavior of
non-associative material, is given by the following relation (1,2)

He 12 (g-a)® + 52 (27, + a - B)2 (44)

in which P is the intermediate principal value of the matrix where elements are
given in Eqn.(13).

Results based on Eqn.(39) and on solving Egns.(33),(37) and (38), for uni-
axial tensile loading, confirm this value of critical hardening for instability
in both the plane stress and plane strain situations.

The critical hardening ratios H are shown in Fig. 6 for a dilatant material
(B=.1, v=.3) as a function of a. The corresponding direction of the unit normal
to the shear band are shown in Fig. 7. Finally, for the case a=.2, the lowest
eigenvalue of [B] is shown in Fig. 8, as a function of the hardening ratio for
both the plane stress and plane strain situations, in which N was set equal to
the corresponding value at critical hardening. The zero eigenvalue occurs at the
critical hardening ratio in both instances.

CONCLUSION

Local material instability may be investigated within a wave propagation
framework in three dimensions. The instability criterion obtained by considering
stationary waves is identical to that obtained from quasi-static considerations.
The numerical investigation reported in this article confirms previous stability
results of incompressible material behavior in plane strain, both for associative
and non-associative elasto-plastic formulations and an approximate formula for
general three-dimensional material behavior with arbitrary loading.
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DAMAGE DIAGNOSIS FOR MDF SYSTEM WITH MATERIAL NONLINEARITY

C. F. Chang, Research Associate and F. D. Ju, Professor
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University of New Mexico
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T. L. Paez
Sandia National Laboratories
Albuquerque, New Mexico

ABSTRACT - The present paper established a procedure for the probabilistic
characterization of a damaged structure, which is modeled as a nonlinear MDF
system. The random excitation may be either stationary or nonstationary. The
stiffness matrix is nonlinear to simulate the elastoplastic behavior of a dam-
aged structure. The stiffness matrix is also random to characterize the ma-
terial and environmental variations. The governing stochastic differential
equation is resolved into one for the mean response and another for its random
component. Responses, their statistical moments and cross-moments are solved
with discrete-time recurrence formulations. The probability of structural
damage or the structural reliability, is than estimated by the upper bound of
the cumulative energy dissipation. The formalism of approach in formulating
the solutions for a generic class of MDF nonlinear problem with Prandt-Reuss
material permits ready adaptation to FEM analysis.

NOMENCLATURE

Aj, A2j’ A3 Constant square matrices

bi Modal shape vector

E[] Mean value of [-]

Egs Eys Energy dissipation in element and beam
f(t), o(t), F(t) Excitation, its mean and randocm componant
k(z), A(w), K Stiffness matrix, its mean and random component
m,c Constant mass and viscous matrices

R(p) Nonlinear restoring force vector

z(t), plt), Z(t) Response, its mean and random component
z(t), n(t), v(t) Velocity, its mean and random component
Z(t), p(t), A(t) Acceleration, its mean and random component
a,y Coefficients of Rayleigh damping

B Coefficient of variation of Young's Modulus

€y Total strain
€ Permanent set
oy Total stress
“y Yield stress

[ ST Random parameter and its mean



1.0 INTRODUCTION

In structural damage diagnosis, the portion of structure where the
material is at the damage state will be inelastic, resulting in nonlinear
stiffness, especially when the structure is subjected to some extreme excit-
tation. For intensive shock loading the excitation is essentially random.
Furthermore, the stiffness will display certain random characteristics, which
arise principally from structural assembly defects, either in fabrication or in
aging, and from the material properties especially in the nonlinear range. The
statistical properties of the response, therefore, must be taken into consider-
ation. In the present paper, a generic structure is to be modeled by a MDF
(Multi-Degree of Freedom) system of which the stiffness matrix is nonlinear and
random. The mass and damping matrices are for most practical cases constant
and deterministic. The objective of the present paper is to establish a pro-
cedure for the probabilistic characterization of the inelastic MDF system and
its response due to a random excitation. Based on the results, the damage and
the reliability of the structure can be assessed.

2.0 FORMULATION

The governing differential equation of motion for a nonlinear structural
framework, modeled as a discrete MDF system, can be written as

mZ+cz+k(z)z="f (M
where m, ¢, k(z) are the NxN mass, damping, and stiffness matrices, f is the
external load vector; z, z, z, are the displacement, velocity, and acceler-
ation vectors of the system. In this investigation, m,c are assumed to be
deterministic and constant. The stiffness is represented by a matrix of

random variable which may correlate to the response z(t). The quantities f,
k(z), and z can be resolved as follows

f=e+F, k(z)=X(n)+K, z=n+1 (2)
where @, X and p are mean values that

Elf] = o, Elk(z)] = x(w), E[z] =n (3)
It is noted that, from (2), the nonlinear properties of stiffness are a assumed
to be reflected by its mean component. The randomness of stiffness is repre-
sented by K which is a matrix of random variables. F is a non-stationary band-

1imited white noise. Also it is noted that the random quantities, F, K and
Z introduced in (2) are all zero mean. Substitution of (2) into (1) yields

m(ii) + () + (x(u>+k) (W) =9 + F (4)

Taking expectation on both sides of the above equation results in the mean
value equation,

mi+ cp + A(p)p = @ - E[kZ] (5)
The difference of (5) and (4) yields the equation for the random component.
mi + ci + A(p)Z = F + E[KZ] - KZ - Kn (6)
In (5) and (6), KZ and E[KZ] being the product of two random quantities, are

higher order terms. By neglecting these terms, (5) and {6) are reduced to
the following expressions

mi+ cp+tR(p)=e (7)

mi+cZ+A(p)Z=F-Kn (8)

10



The omission of the higher order terms are postulated for the MDF systems. For
SDF systems, the errors in response and its statistics resulting from omission
of the higher order terms will be discussed in Sec. 5.0.

3.0 NONLINEAR MODEL

The present paper will treat a generic class of elasto-plastic material
that satisfies the Prandtl-Reuss relationship, Fig. 1. For a beam with
symmetric cross section, the moment for any section at location x, measured
longitudinally along the beam, can be evaluated by

M(x) = antw(h)h dn (9)

where w(h) is the width of the beam at the distance h measured from neutral
axis and ot is the stress at the same location. From Figure 1, ot can be
replaced by

o (x;h) = [e (x) + e (x,h) - e (x,h)]E (10)

where e5(x), ep(x,h) are axial and the bending strain, respectively, and
eg(x,h) is the permanent set at locations x and h. For pure bending, the
deflections in the beam are small, (9) becomes

C
M(x) = EIy" - E f.c eo(xsh) hw(h) dh (11)

where E is the Young's modulus, I is the moment of inertia of the cross
section, y" is the second derivative of the deflection with respect to the
coordinate x, and c is the half depth of the symmetric cross section. In
the present paper, all external load, without loss of generality, are re-
solved at nodal point. Hence

Ely" E/duj e (w,mh wihjdn + 2 e 4 cx v (12)

N =

Ely = Efdvf du[ (u,hYh w(h)dh + C1x3+%C2x+Cx+C (13)

ol

The constant C;, i = 1,..,4 are prescribed from boundary conditions. The
axial strain can be evaluated with analogous approach.

cali) = B (PrE / (w.h) w(h) dn) (14)

where P is the axial forces, L is the length of the beam, A is the cross-
sectional area. The permanent sets are yet to be determined. For that
purpose an iteration scheme is developed using finite difference method
described as follows in five steps:

1. The displacement at time tj+1 can be evaiuated from (7) by using
central difference assumption;

=p -1 2
Hyep = AT 2mg A+ at%(eg- ROy )) (15)
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where

A1 =

It is assumed that the system starts at rest.

cAt +m A, = Jcat-m (16)

N'!—‘

2. For each beam member, the nodal displacements can be obtained from

341 which are in global coordinates. Hence, the coordinate
transformation is required in order to obtain the deformations of

each beam member in local coordinates.

3. At the beginning of time t:J.+1

sets for this time step are equal to those permanent sets at time

, it is designated that the permanent

tj. Terms such as y" and eo(x) can subsequently be computed.
The total strain et(x) is then computed.

4. Based on et(x) new permanent sets are evaluated, with which new

estimates of y, eo(x) and e, are evaluated. Steps 3 and 4 are

t
iterated until convergence of the values of permanent sets.

5. From the final permanent sets, the restoring forces R(pj+1) for
each member can be evaluated. Accordingly, the global restoring
forces R(pj+1) are assembled with the restoring forces of each beam
member.

In the above iteration scheme, the neutral axis does not change through-
out the computation. Because of this assumption, the permanent set will first
converge, then alternate between two values. In such cases, an approximation
for the permanent sets can be established by averaging the two values.

4.0 PROBABILISTIC SOLUTION OF MDF, NONLINEAR SYSTEM
Since (8) characterizes the random component of the structural

response, the displacement response at time tj+1 can be solved by using
central difference approximation. Namely,

=p-1 2p _ At
ZJ.+1 At (AY zj + A3Zj_1+ BEOF - at Ki;) (17)
where A1 and A3 are given by (16) and
_ o A4l
A2j 2m At X(Pj) (18)

in which A(p,;) is the equivalent stiffness matrix at time t.; the sth
column in x(ﬂj) is by definition J

= 9R(n3) 19
Xs(p‘j) ?F]— ( )
The response covariance matrix [1] E[Zj+12j+1T]’ can then be established.
It is noted that Fj is independent of Zj_lT if the excitation is a sequence

of independent and independently arriving random impulses. It is reasonable
to assume that Fj is independent of K. Also, Fj is independent of ZJ.T if the

input is white noise type excitation. Accordingly, it is possible to show that
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